Previously, we have shown that Maternal Separation and Early Weaning (MSEW) exacerbates high fat diet (HF)-induced visceral obesity in female offspring compared to normally reared female mice. Stress hormones such as glucocorticoids and mineralocorticoids are critical mediators in the process of fat expansion, and both can activate the mineralocorticoid receptor (MR) in the adipocyte. Therefore, this study aimed to, comprehend the specific effects of MSEW on adipose tissue basic homeostatic function, and investigate whether female MSEW mice show an exacerbated obesogenic response mediated by MR.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2021
The lactate dehydrogenase isoform A (LDHA) is a key metabolic enzyme that preferentially catalyzes the conversion of pyruvate to lactate. Whereas LDHA is highly expressed in many tissues, its expression is turned off in the differentiated adult β-cell within the pancreatic islets. The repression of LDHA under normal physiological condition and its inappropriate upregulation under a diabetogenic environment is well-documented in rodent islets/β-cells but little is known about LDHA expression in human islet cells and whether its abundance is altered under diabetic conditions.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
March 2021
Obesity is associated with alterations in hepatic lipid metabolism. We previously identified the prorenin receptor (PRR) as a potential contributor to liver steatosis. Therefore, we aimed to determine the relative contribution of PRR and its soluble form, sPRR, to lipid homeostasis.
View Article and Find Full Text PDFObesity-related hypertension is a major public health concern. We recently demonstrated that plasma levels of the soluble form of the prorenin receptor (sPRR) were elevated in obesity-associated hypertension. Therefore, in the present study, we investigated the contribution of sPRR to blood pressure (BP) elevation in the context of obesity.
View Article and Find Full Text PDFDeletion of the prorenin receptor (PRR) in adipose tissue elevates systolic blood pressure (SBP) and the circulating soluble form of PRR (sPRR) in male mice fed a high-fat (HF) diet. However, sex differences in the contribution of adipose-PRR and sPRR to the regulation of the renin-angiotensin system (RAS) in key organs for blood pressure control are undefined. Therefore, we assessed blood pressure and the systemic and intrarenal RAS status in adipose-PRR knockout (KO) female mice.
View Article and Find Full Text PDFLittle is still known about brain protein synthesis. In order to increase our knowledge of it, we aimed to modulate brain protein synthesis rates through aging, variations in nutritional state (fed state vs. fasted state), high sucrose diet and micronutrient supplementation.
View Article and Find Full Text PDFHigh-sugar intake and senescence share common deleterious effects, in particular in liver, but combination of these two factors was little studied. Our aims were to examine the effect of a high-sucrose diet in liver of old rats and also the potential benefices of a polyphenol/micronutrient supplementation. Four groups of 22-month-old male rats fed during 5 months with a diet containing either 13 or 62% sucrose, supplemented or not with rutin, vitamin E, A, D, selenium, and zinc were compared.
View Article and Find Full Text PDFIn our societies, the proportions of elderly people and of obese individuals are increasing. Both factors are associated with high health-related costs. During obesity, many authors suggest that it is a high chronic intake of added sugars (HCIAS) that triggers the shift towards pathology.
View Article and Find Full Text PDFWe aimed to determine the time-course of metabolic changes related to the early onset of insulin resistance (IR), trying to evidence breaking points preceding the appearance of the clinical IR phenotype. The model chosen was the fructose (FRU)-fed rat compared to controls fed with starch. We focused on the hepatic metabolism after 0, 5, 12, 30, or 45 days of FRU intake.
View Article and Find Full Text PDFBackground: Today, high chronic intake of added sugars is frequent, which leads to inflammation, oxidative stress, and insulin resistance. These 3 factors could reduce meal-induced stimulation of muscle protein synthesis and thus aggravate the age-related loss of muscle mass (sarcopenia).
Objectives: Our aims were to determine if added sugars could accelerate sarcopenia and to assess the capacity of antioxidants and anti-inflammatory agents to prevent this.
Our aim was to compare and combine 3 nutritional strategies to slow down the age-related loss of muscle mass in healthy old rats: 1) increase protein intake, which is likely to stimulate muscle protein anabolism; 2) use leucine rich, rapidly digested whey proteins as protein source (whey proteins are recognized as the most effective proteins to stimulate muscle protein anabolism). 3) Supplement animals with a mixture of chamomile extract, vitamin E, vitamin D (reducing inflammation and oxidative stress is also effective to improve muscle anabolism). Such comparisons and combinations were never tested before.
View Article and Find Full Text PDF