Ni-W alloy films were electrodeposited from a gluconate aqueous bath at pH=5.0, at varying current densities and temperatures. While there is little to no difference in composition, i.
View Article and Find Full Text PDFNovel Zn-Co-CeO protective composite coatings were deposited successfully from chloride plating solutions. Two different types of ceria sources were used and compared: commercial ceria powder and home-made ceria sol. Electrodeposition was performed by a direct current in the range of 1-8 A dm.
View Article and Find Full Text PDFUnivariate and multivariate optimizations of a novel electroless nickel formulation have been carried out by means of the Taguchi method. From the compositional point of view, adjustment of the complexing agent concentration in solution is crucial for fine-tuning free Ni ions concentration and, in turn, the mechanical properties of the resulting coatings. The Ni (II) concentration and the pH are the main parameters which help restrict the incorporation of phosphorous into the Ni layers.
View Article and Find Full Text PDFThree-dimensional porous scaffolds offer some advantages over conventional treatments for bone tissue engineering. Amongst all non-bioresorbable scaffolds, biocompatible metallic scaffolds are preferred over ceramic and polymeric scaffolds, as they can be used as electrodes with different electric field intensities (or voltages) for electric stimulation (ES). In the present work we have used a palladium-coated polymeric scaffold, generated by electroless deposition, as a bipolar electrode to electrically stimulate human osteoblast-like Saos-2 cells.
View Article and Find Full Text PDFAluminum electrodeposition can be carried out from several ionic liquid electrolyte formulations. Nevertheless, this plating process has not been industrialized so far because of the durability of the electrolytes and because the Al coatings obtained are non-fully homogeneous in terms of coating morphology and thickness distribution. In this work we electrodeposited Al coatings from a 3-butyl-1-ethylimidazolium tetrachloroaluminate electrolyte additivated with increasing concentrations of a new cost-effective additive: light aromatic naphtha solvent.
View Article and Find Full Text PDFIn this study, nanocrystalline Fe-W alloy and Fe-W/AlO composite coatings with various contents of sub-microsized alumina particles have been obtained by electrodeposition from an environmentally friendly Fe(III)-based electrolyte with the aim to produce a novel corrosion and wear resistant material. The increase in volume fraction of AlO in deposits from 2 to 12% leads to the grain refinement effect, so that the structure of the coatings change from nanocrystalline to amorphous-like with grain sizes below 20 nm. Nevertheless, the addition of particles to the Fe-W matrix does not prevent the development of a columnar structure revealed for all the types of studied coatings.
View Article and Find Full Text PDFA fully nanoporous Fe-rich alloy, prepared by selective dissolution of melt-spun FeCu ribbons, exhibits outstanding properties as a heterogeneous Fenton catalyst toward the degradation of methyl orange (MO) in aqueous solution. In addition, the ferromagnetic characteristics of this material enable its wireless manipulation toward specific locations within polluted wastewater. The influence of selective dissolution on the microstructure, sample morphology (surface and cross-section), elemental composition, and magnetic properties of the resulting nanoporous alloy is investigated.
View Article and Find Full Text PDFA facile synthetic approach to prepare porous ZnO@CuNi hybrid films is presented. Initially, magnetic CuNi porous layers (consisting of phase separated CuNi alloys) are successfully grown by electrodeposition at different current densities using H bubbles as a dynamic template to generate the porosity. The porous CuNi alloys serve as parent scaffolds to be subsequently filled with a solution containing ZnO nanoparticles previously synthesized by sol-gel.
View Article and Find Full Text PDFTwo new Fe-based alloys, Fe-10Mn6Si1Pd and Fe-30Mn6Si1Pd, have been fabricated by arc-melting followed by copper mold suction casting. The Fe-30Mn6Si1Pd alloy mainly consists of ε-martensite and γ-austenite Fe-rich phases whereas the Fe-10Mn6Si1Pd alloy primarily contains the α-Fe(Mn)-ferrite phase. Additionally, Pd-rich precipitates were detected in both alloys.
View Article and Find Full Text PDFA novel nanocomposite material made of two-dimensional BiOCl nanoplates assembled into highly porous titania has been successfully prepared following a facile sol-gel reaction. Both the TiO2 (anatase) and BiOCl components are crystalline as demonstrated by X-ray diffraction and transmission electron microscopy analyses. TiO2 exhibits a highly porous network and possesses a small crystallite size, whereas BiOCl forms micrometer-sized plates with nanometer thicknesses.
View Article and Find Full Text PDFMesoionic 4,4'-bis(1,2,3-triazole-5,5'-diylidene) Rh(I) complexes having a C2 chiral 4,4'-axis were accessed from 3-alkyltriazolium salts in virtually complete de. Their structure and configurational integrity were assessed by NMR spectroscopy, X-ray crystallography, and chiral HPLC. Computational analysis of the MICs involved in the reaction suggested the formation of a highly stable and unprecedented cation-carbene intermediate species, which could be evidenced experimentally by cyclic voltammetry analysis.
View Article and Find Full Text PDF