Lyso-PS (lyso-phosphatidylserine) has been shown to activate the G(i/o)-protein-coupled receptor GPR34. Since in vitro and in vivo studies provided controversial results in assigning lyso-PS as the endogenous agonist for GPR34, we investigated the evolutionary conservation of agonist specificity in more detail. Except for some fish GPR34 subtypes, lyso-PS has no or very weak agonistic activity at most vertebrate GPR34 orthologues investigated.
View Article and Find Full Text PDFThe X-chromosomal GPR34 gene encodes an orphan G(i) protein-coupled receptor that is highly conserved among vertebrates. To evaluate the physiological relevance of GPR34, we generated a GPR34-deficient mouse line. GPR34-deficient mice were vital, reproduced normally, and showed no gross abnormalities in anatomical, histological, laboratory chemistry, or behavioral investigations under standard housing.
View Article and Find Full Text PDFPurinergic Signal
September 2007
Metabotropic pyrimidine and purine nucleotide receptors (P2Y receptors) belong to the superfamily of G protein-coupled receptors (GPCR). They are distinguishable from adenosine receptors (P1) as they bind adenine and/or uracil nucleotide triphosphates or diphosphates depending on the subtype. Over the past decade, P2Y receptors have been cloned from a variety of tissues and species, and as many as eight functional subtypes have been characterized.
View Article and Find Full Text PDFDirected cloning approaches and large-scale sequencing of several vertebrate genomes unveiled many new members of the G-protein-coupled receptor (GPCR) superfamily, among them GPR34. Initial studies showed that GPR34 is an evolutionarily old GPCR structurally related to a group of ADP-like receptors. To gain insight into the genomic organization, regulation of expression, and supragenomic diversification of GPR34 several vertebrate species were analyzed.
View Article and Find Full Text PDFProstanoid receptors belong to the class of heptahelical plasma membrane receptors. For the five prostanoids, eight receptor subtypes have been identified. They display an overall sequence similarity of roughly 30%.
View Article and Find Full Text PDF