Publications by authors named "Eva Egelseer"

A promising new approach for the production of biocatalysts comprises the use of surface-layer (S-layer) lattices that present functional multimeric enzymes on their surface, thereby guaranteeing most accurate spatial distribution and orientation, as well as maximal effectiveness and stability of these enzymes. For proof of concept, a tetrameric and a trimeric extremozyme are chosen for the construction of S-layer/extremozyme fusion proteins. By using a flexible peptide linker, either one monomer of the tetrameric xylose isomerase XylA from the thermophilic Thermoanaerobacterium strain JW/SL-YS 489 or, in another approach, one monomer of the trimeric carbonic anhydrase from the methanogenic archaeon Methanosarcina thermophila are genetically linked to one monomer of the S-layer protein SbpA of Lysinibacillus sphaericus CCM 2177.

View Article and Find Full Text PDF

The S-layer protein SbpA of Lysinibacillus sphaericus CCM 2177 assembles into a square (p4) lattice structure and recognizes a pyruvylated secondary cell wall polymer (SCWP) as the proper anchoring structure to the rigid cell wall layer. Sequencing of 8,004 bp in the 5'-upstream region of the S-layer gene sbpA led to five ORFs-encoding proteins involved in cell wall metabolism. After cloning and heterologous expression of ORF1 and ORF5 in Escherichia coli, the recombinant autolysin rAbpA and the recombinant pyruvyl transferase rCsaB were isolated, purified, and correct folding was confirmed by circular dichroism.

View Article and Find Full Text PDF

The Gram-positive bacterium Geobacillus stearothermophilus ATCC 12980 is completely covered with a two-dimensional crystalline monolayer composed of the S-layer protein SbsC. In order to complete the structure of the full-length protein, additional soluble constructs containing the crucial domains for self-assembly have been successfully cloned, expressed and purified. Crystals obtained from three different recombinant constructs yielded diffraction to 3.

View Article and Find Full Text PDF

One of the key challenges in nanobiotechnology is the utilization of self- assembly systems, wherein molecules spontaneously associate into reproducible aggregates and supramolecular structures. In this contribution, we describe the basic principles of crystalline bacterial surface layers (S-layers) and their use as patterning elements. The broad application potential of S-layers in nanobiotechnology is based on the specific intrinsic features of the monomolecular arrays composed of identical protein or glycoprotein subunits.

View Article and Find Full Text PDF

Methods for organizing functional materials at the nanometer scale are essential for the development of novel fabrication techniques. One of the most relevant areas of research in nanobiotechnology concerns technological utilization of self-assembly systems, wherein molecules spontaneously associate into reproducible supramolecular structures. For this purpose, the laccase of Bacillus halodurans C-125 was immobilized on the S-layer lattice formed by SbpA of Lysinibacillus sphaericus CCM 2177 either by (i) covalent linkage of the enzyme to the natural protein self-assembly system or (ii) by construction of a fusion protein comprising the S-layer protein and the laccase.

View Article and Find Full Text PDF

Crystalline bacterial cell surface layers (S-layers) are the outermost cell envelope component of many bacteria and archaea. S-layers are monomolecular arrays composed of a single protein or glycoprotein species and represent the simplest biological membrane developed during evolution. The wealth of information available on the structure, chemistry, genetics and assembly of S-layers revealed a broad spectrum of applications in nanobiotechnology and biomimetics.

View Article and Find Full Text PDF

Background: Genetic fusion of the major birch pollen allergen (Bet v1) to bacterial surface-(S)-layer proteins resulted in recombinant proteins exhibiting reduced allergenicity as well as immunomodulatory capacity. Thus, S-layer/allergen fusion proteins were considered as suitable carriers for new immunotherapeutical vaccines for treatment of Type I hypersensitivity. Up to now, endotoxin contamination of the fusion protein which occurred after isolation from the gram-negative expression host E.

View Article and Find Full Text PDF

The S-layer protein SbsC from Geobacillus stearothermophilus ATCC 12980 is the most prevalent single protein produced by the bacterium and covers the complete bacterial surface in the form of a two-dimensional crystalline monolayer. In order to elucidate the structural features of the assembly domains, several N-terminally truncated fragments of SbsC have been crystallized. Crystals obtained from recombinant fragments showed anisotropic diffraction to a maximum of 3.

View Article and Find Full Text PDF

Surface layer (S-layer) proteins self-assemble into two-dimensional crystalline lattices that cover the cell wall of all archaea and many bacteria. We have generated assembly-negative protein variants of high solubility that will facilitate high-resolution structure determination. Assembly-negative versions of the S-layer protein SbsB from Geobacillus stearothermophilus PV72/p2 were obtained using an insertion mutagenesis screen.

View Article and Find Full Text PDF

The complete nucleotide sequence encoding the high-molecular-mass amylase (HMMA) of Geobacillus stearothermophilus ATCC 12980 was established by PCR techniques. Based on the hmma gene sequence, the full-length rHMMA, four N- or C-terminal rHMMA truncations as well as three C-terminal rHMMA fragments were cloned and heterologously expressed in Escherichia coli. Purified rHMMA forms were used either for affinity studies with the recombinant (r) S-layer protein SbsC (rSbsC), peptidoglycan-containing sacculi (PGS) and pure peptidoglycan (PG) devoid of the secondary cell wall polymer (SCWP), or for surface plasmon resonance (SPR) studies using rSbsC and isolated SCWP.

View Article and Find Full Text PDF

Surface layers (S-layers) comprise the outermost cell envelope component of most archaea and many bacteria. Here we present the structure of the bacterial S-layer protein SbsC from Geobacillus stearothermophilus, showing a very elongated and flexible molecule, with strong and specific binding to the secondary cell wall polymer (SCWP). The crystal structure of rSbsC((31-844)) revealed a novel fold, consisting of six separate domains, which are connected by short flexible linkers.

View Article and Find Full Text PDF

An ideal vaccine for allergen-specific immunotherapy of type I allergies should display reduced mediator-releasing capacity, induce maturation of APC, and modify the disease-eliciting Th2-dominated allergen-specific response to a more physiological response. We have previously shown that rSbsC-Bet v 1, the recombinant fusion protein of a bacterial surface (S-layer) protein of Geobacillus stearothermophilus ATCC 12980 and the major birch pollen allergen Bet v 1, exhibited reduced allergenicity and induced IFN-gamma and IL-10 synthesis in Bet v 1-specific Th2 clones. In this study, we characterized the effects of rSbsC-Bet v 1 on immature monocyte-derived dendritic cells (mdDC) and the consequences for the polarization of naive CD4(+) T lymphocytes isolated from the blood of birch pollen-allergic patients.

View Article and Find Full Text PDF

Surface plasmon resonance studies using C-terminal truncation forms of the S-layer protein SbsC (recombinant SbsC consisting of amino acids 31 to 270 [rSbsC(31-270)] and rSbsC(31-443)) and the secondary cell wall polymer (SCWP) isolated from Geobacillus stearothermophilus ATCC 12980 confirmed the exclusive responsibility of the N-terminal region comprising amino acids 31 to 270 for SCWP binding. Quantitative analyses indicated binding behavior demonstrating low, medium, and high affinities.

View Article and Find Full Text PDF

Crystalline bacterial cell surface layers (S-layers) have been identified in a great number of different species of bacteria and represent an almost universal feature of archaea. Isolated native S-layer proteins and S-layer fusion proteins incorporating functional sequences self-assemble into monomolecular crystalline arrays in suspension, on a great variety of solid substrates and on various lipid structures including planar membranes and liposomes. S-layers have proven to be particularly suited as building blocks and patterning elements in a biomolecular construction kit involving all major classes of biological molecules (proteins, lipids, glycans, nucleic acids and combinations of them) enabling innovative approaches for the controlled 'bottom-up' assembly of functional supramolecular structures and devices.

View Article and Find Full Text PDF

Based on the S-layer protein SbpA of Bacillus sphaericus CCM 2177, an S-layer-streptavidin fusion protein was constructed. After heterologous expression, isolation of the fusion protein, and refolding, functional heterotetramers were obtained that had retained the ability to recrystallize into the square-lattice structure on plain gold chips and on gold chips precoated with secondary cell wall polymer (SCWP), which is the natural anchoring molecule for the S-layer protein in the bacterial cell wall. Monolayers generated by recrystallization of heterotetramers on plain gold chips or on gold chips precoated with thiolated SCWP were exploited for the binding of biotinylated oligonucleotides (30-mers).

View Article and Find Full Text PDF

Crystalline arrays of protein or glycoprotein subunits forming surface layers (S-layers) are the most common outermost envelope components of prokaryotic organisms (archaea and bacteria). The wealth of information on the structure, chemistry, genetics, morphogenesis, and function of S-layers has revealed a broad application potential. As S-layers are periodic structures, they exhibit identical physicochemical properties for each molecular unit down to the subnanometer level and possess pores of identical size and morphology.

View Article and Find Full Text PDF

The S-layer protein SbpA of Bacillus sphaericus CCM 2177 recognizes a pyruvylated secondary cell wall polymer (SCWP) as anchoring structure to the peptidoglycan-containing layer. Data analysis from surface plasmon resonance (SPR) spectroscopy revealed the existence of three different binding sites with high, medium and low affinity for rSbpA on SCWP immobilized to the sensor chip. The shortest C-terminal truncation with specific affinity to SCWP was rSbpA(31-318).

View Article and Find Full Text PDF

The bacterial cell surface layer (S-layer) protein of Bacillus sphaericus CCM 2177 assembles into a square lattice structure and recognizes a distinct type of secondary cell wall polymer (SCWP) as the proper anchoring structure in the rigid cell wall layer. For generating a nanopatterned sensing layer with high density and well defined distance of the ligand on the outermost surface, an S-layer fusion protein incorporating the sequence of a variable domain of a heavy chain camel antibody directed against prostate-specific antigen (PSA) was constructed, produced, and recrystallized on gold chips precoated with thiolated SCWP. The S-layer protein moiety consisted of the N-terminal part which specifically recognized the SCWP as binding site and the self-assembly domain.

View Article and Find Full Text PDF

The chimeric gene encoding a C-terminally-truncated form of the S-layer protein SbpA from Bacillus sphaericus CCM 2177 and two copies of the Fc-binding Z-domain was constructed, cloned, and heterologously expressed in Escherichia coli HMS174(DE3). The Z-domain is a synthetic analogue of the B-domain of protein A, capable of binding the Fc part of immunoglobulin G (IgG). The S-layer fusion protein rSbpA(31-1068)/ZZ retained the specific properties of the S-layer protein moiety to self-assemble in suspension and to recrystallize on supports precoated with secondary cell wall polymer (SCWP), which is the natural anchoring molecule for the S-layer protein in the bacterial cell wall.

View Article and Find Full Text PDF

The chimaeric gene encoding a C-terminally truncated form of the S-layer protein SbpA of Bacillus sphaericus CCM 2177 and the EGFP (enhanced green fluorescent protein) was ligated into plasmid pET28a and cloned and expressed in Escherichia coli. Just 1 h after induction of expression an intense EGFP fluorescence was detected in the cytoplasm of the host cells. Expression at 28 degrees C instead of 37 degrees C resulted in clearly increased fluorescence intensity, indicating that the folding process of the EGFP moiety was temperature sensitive.

View Article and Find Full Text PDF

The C-terminal truncated form of the S-layer protein SbsC from Geobacillus stearothermophilus, rSbsC(31-844), has been crystallized by the vapour-diffusion method using polyethylene glycol 6000 as a precipitating agent. The crystals diffract to 3 A resolution using synchrotron radiation and belong to space group P2(1), with unit-cell parameters a = 57.24, b = 98.

View Article and Find Full Text PDF

Crystalline bacterial cell surface layer (S-layer) proteins are composed of a single protein or glycoprotein species. Isolated S-layer subunits frequently recrystallize into monomolecular protein lattices on various types of solid supports. For generating a functional protein lattice, a chimeric protein was constructed, which comprised the secondary cell wall polymer-binding region and the self-assembly domain of the S-layer protein SbpA from Bacillus sphaericus CCM 2177, and a single variable region of a heavy chain camel antibody (cAb-Lys3) recognizing lysozyme as antigen.

View Article and Find Full Text PDF

The nucleotide sequence encoding the crystalline bacterial cell surface (S-layer) protein SbpA of Bacillus sphaericus CCM 2177 was determined by a PCR-based technique using four overlapping fragments. The entire sbpA sequence indicated one open reading frame of 3,804 bp encoding a protein of 1,268 amino acids with a theoretical molecular mass of 132,062 Da and a calculated isoelectric point of 4.69.

View Article and Find Full Text PDF

The mature crystalline bacterial cell surface (S-layer) protein SbsC of Bacillus stearothermophilus ATCC 12980 comprises amino acids 31-1099 and assembles into an oblique lattice type. As the deletion of up to 179 C-terminal amino acids did not interfere with the self-assembly properties of SbsC, the sequence encoding the major birch pollen allergen (Bet v1) was fused to the sequence encoding the truncated form rSbsC(31-920). The S-layer fusion protein, termed rSbsC/Bet v1, maintained the ability to self-assemble into flat sheets and open-ended cylinders.

View Article and Find Full Text PDF

The mature surface layer (S-layer) protein SbsC of Bacillus stearothermophilus ATCC 12980 comprises amino acids 31-1099 and self-assembles into an oblique lattice type which functions as an adhesion site for a cell-associated high-molecular-mass exoamylase. To elucidate the structure-function relationship of distinct segments of SbsC, three N- and seven C-terminal truncations were produced in a heterologous expression system, isolated, purified and their properties compared with those of the recombinant mature S-layer protein rSbsC(31-1099). With the various truncated forms it could be demonstrated that the N-terminal part (aa 31-257) is responsible for anchoring the S-layer subunits via a distinct type of secondary cell wall polymer to the rigid cell wall layer, but this positively charged segment is not required for the self-assembly of SbsC, nor for generating the oblique lattice structure.

View Article and Find Full Text PDF