Background: Active sodium reabsorption is the major factor influencing renal oxygen consumption and production of reactive oxygen species (ROS). Increased sodium reabsorption uses more oxygen, which may worsen medullary hypoxia and produce more ROS via enhanced mitochondrial ATP synthesis. Both mechanisms may activate the hypoxia-inducible factor (HIF) pathway.
View Article and Find Full Text PDFBackground: Water and solute transport across epithelia can occur the transcellular or paracellular pathways. Tight junctions play a key role in mediating paracellular ion reabsorption in the kidney. In the renal collecting duct, which is a typical absorptive tight epithelium, coordination between transcellular sodium reabsorption and paracellular permeability may prevent the backflow of reabsorbed sodium to the tubular lumen along a steep electrochemical gradient.
View Article and Find Full Text PDFAmmonia detoxification and gluconeogenesis are major hepatic functions mutually connected through amino acid metabolism. The liver is rich in glutamate dehydrogenase (GDH) that catalyzes the reversible oxidative deamination of glutamate to α-ketoglutarate and ammonia, thus bridging amino acid-to-glucose pathways. Here we generated inducible liver-specific GDH-knockout mice (Hep ) to explore the role of hepatic GDH on metabolic homeostasis.
View Article and Find Full Text PDFKey Points: Body Na content is tightly controlled by regulated urinary Na excretion. The intrarenal mechanisms mediating adaptation to variations in dietary Na intake are incompletely characterized. We confirmed and expanded observations in mice that variations in dietary Na intake do not alter the glomerular filtration rate but alter the total and cell-surface expression of major Na transporters all along the kidney tubule.
View Article and Find Full Text PDFJ Am Soc Nephrol
September 2016
Tubular reabsorption of filtered sodium is tightly controlled to maintain body volume homeostasis. The rate of sodium transport by collecting duct (CD) cells varies widely in response to dietary sodium intake, GFR, circulating hormones, neural signals, and local regulatory factors. Reabsorption of filtered sodium by CD cells occurs via a two-step process.
View Article and Find Full Text PDFLarge shifts of osmolality occur in the kidney medulla as part of the urine concentrating mechanism. Hyperosmotic stress profoundly challenges cellular homeostasis and induces endoplasmic reticulum (ER) stress. Here, we examined the unfolded protein response (UPR) in hyperosmotically-challenged principal cells of the kidney collecting duct (CD) and show its relevance in controlling epithelial sodium channel (ENaC) abundance, responsible for the final adjustment of Na(+) excretion.
View Article and Find Full Text PDFProteinuria and hyperphosphatemia are cardiovascular risk factors independent of GFR. We hypothesized that proteinuria induces relative phosphate retention via increased proximal tubule phosphate reabsorption. To test the clinical relevance of this hypothesis, we studied phosphate handling in nephrotic children and patients with CKD.
View Article and Find Full Text PDFThe final control of renal water reabsorption occurs in the collecting duct (CD) and relies on regulated expression of aquaporin-2 (AQP2) in principal CD cells. AQP2 transcription is primarily induced by type 2 vasopressin receptor (V2R)-cAMP-protein kinase A (PKA) signaling but also by other factors, including TonEBP and NF-κB. NAPDH oxidase 4 (NOX4) represents a major source of reactive oxygen species (ROS) in the kidney.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
October 2013
Albuminuria is strongly associated with progressive kidney tubulo-interstitial damage and chronic kidney disease (CKD) progression. In proteinuric nephropathies, albumin reabsorption by the proximal tubule is saturated and the distal nephron is exposed to high concentrations of luminal albumin that may produce adverse effects. Since proximal tubular cells exposed to albuminuria exhibit a proinflammatory and profibrotic response, we assessed the effect of albuminuria in the collecting duct (CD).
View Article and Find Full Text PDFNADPH oxidases synthesize reactive oxygen species that may participate in fibrosis progression. NOX4 and NOX2 are NADPH oxidases expressed in the kidneys, with the former being the major renal isoform, but their contribution to renal disease is not well understood. Here, we used the unilateral urinary obstruction model of chronic renal injury to decipher the role of these enzymes using wild-type, NOX4-, NOX2-, and NOX4/NOX2-deficient mice.
View Article and Find Full Text PDFThe mechanisms underlying genetic susceptibility at loci discovered by genome-wide association study (GWAS) approaches in human cancer remain largely undefined. In this study, we characterized the high-risk neuroblastoma association at the BRCA1-related locus, BARD1, showing that disease-associated variations correlate with increased expression of the oncogenically activated isoform, BARD1β. In neuroblastoma cells, silencing of BARD1β showed genotype-specific cytotoxic effects, including decreased substrate-adherence, anchorage-independence, and foci growth.
View Article and Find Full Text PDFEstrogen is involved in breast cancer risk, which is increased for BRCA1 mutation carriers, suggesting a role for BRCA1 in estrogen signaling. BRCA1 exerts its function through forming an E3 ubiquitin ligase with BARD1. We report that the estrogen receptor alpha is a target of the BRCA1-BARD1 ubiquitin ligase in vivo.
View Article and Find Full Text PDFThe BRCA1-associated ring domain protein 1 (BARD1) interacts with BRCA1 via its RING finger domain. The BARD1-BRCA1 complex participates in DNA repair, cell cycle control, genomic stability, and mitotic spindle formation through its E3 ubiquitin ligase activity. Cancer cells express several BARD1 protein isoforms, including the RING finger-deficient variant BARD1beta.
View Article and Find Full Text PDFBARD1 is required for protein stability and tumor suppressor functions of BRCA1, which depend on the ubiquitin ligase activity of the BRCA1-BARD1 heterodimer. The NH(2)-terminal RING domains of both proteins act as interaction modules and form a ubiquitin ligase, which has functions in DNA repair, cell cycle checkpoint regulation, and mitosis. Interestingly, up-regulated expression of truncated BARD1 isoforms was found to be associated with poor prognosis in breast and ovarian cancers and, in a hormonally regulated fashion, in the human cytotrophoblast, a cell type with properties reminiscent of cancer cells.
View Article and Find Full Text PDFBRCA1 acts as a tumor suppressor gene, and germ-line mutations in this gene are found in a large proportion of families with breast and ovarian cancers. The BRCA1 protein has been implicated in several cellular processes, such as transcription regulation, DNA responses to DNA damage signals, cell cycle control, and apoptosis. Apoptosis plays a critical role in radiation- and chemotherapy-induced cytotoxicity, and its impairment contributes to resistance to tumor treatments.
View Article and Find Full Text PDFBRCA1 has been implicated in a number of cellular processes, including transcription regulation, DNA damage repair, cell cycle control, and apoptosis. We identified poly(A)-binding protein 1 (PABP) as a novel BRCA1-interacting protein in a yeast two-hybrid screen and confirmed the interaction by in vitro assays and coimmunoprecipitation in mammalian cells. Endogenous interaction between BRCA1 and PABP was also observed.
View Article and Find Full Text PDFThe tumour suppressor gene BRCA1 encodes a 220 kDa protein that participates in multiple cellular processes. The BRCA1 protein contains a tandem of two BRCT repeats at its carboxy-terminal region. The majority of disease-associated BRCA1 mutations affect this region and provide to the BRCT repeats a central role in the BRCA1 tumour suppressor function.
View Article and Find Full Text PDFGerm line alterations in BRCA1 (breast cancer susceptibility gene 1) are associated with an increased susceptibility to breast and ovarian cancer. BRCA1 acts as a scaffold protein implicated in multiple cellular functions, such as transcription, DNA repair, and ubiquitination. However, the molecular mechanisms responsible for tumorigenesis are not yet fully understood.
View Article and Find Full Text PDF