Chem Commun (Camb)
May 2019
Very high activities were observed in the redox-induced hydroamination of alkynes by employing a redox-active gold(i) complex featuring an electron-deficient, terphenyl-substituted phosphonite-based ligand. The hydroamination proceeds roughly two-fold faster with the in situ oxidized catalysts than with their reduced form.
View Article and Find Full Text PDFA straightforward access is provided to iron(II) complexes showing exceedingly slow spin-state interconversion by utilizing trigonal-prismatic directing ligands (L(n)) of the extended-tripod type. A detailed analysis of the interrelations between complex structure (X-ray diffraction, density functional theory) and electronic character (SQUID magnetometry, Mössbauer spectroscopy, UV/vis spectroscopy) of the iron(II) center in mononuclear complexes [FeL(n)] reveals spin crossover to occur along a coupled breathing/torsion reaction coordinate, shuttling the complex between the octahedral low-spin state and the trigonal-prismatic high-spin state along Bailar's trigonal twist pathway. We associate both the long spin-state lifetimes in the millisecond domain close to room temperature and the substantial barriers against thermal scrambling (Ea ≈ 33 kJ mol(-1), from Arrhenius analysis) with stereochemical constraints.
View Article and Find Full Text PDF