Spontaneous preterm delivery presents one of the most complex challenges in obstetrics and is a leading cause of perinatal morbidity and mortality. Although it is a common endpoint for multiple pathological processes, the mechanisms governing the etiological complexity of spontaneous preterm birth and the placental responses are poorly understood. This study examined placental tissues collected between May 2019 and May 2022 from a well-defined cohort of women who experienced spontaneous preterm birth (n = 72) and healthy full-term deliveries (n = 30).
View Article and Find Full Text PDFSupercritical fluid chromatography (SFC) is a rapidly expanding technique in the analysis of nonpolar to moderately polar substances and, more recently, also in the analysis of compounds with higher polarity. Herein, we demonstrate a proof of concept for the application of a commercial SFC instrument with electrospray ionization-mass spectrometry (MS) detection as a platform for the comprehensive analysis of metabolites with the full range of polarities, from nonpolar lipids up to highly polar metabolites. The developed single-platform SFC-MS lipidomic/metabolomic method is based on two consecutive injections of lipid and polar metabolite extracts from biphase methyl -butyl ether extraction using a diol column and two different gradient programs of methanol-water-ammonium formate modifier.
View Article and Find Full Text PDFPancreatic cancer has the worst prognosis among all cancers. Cancer screening of body fluids may improve the survival time prognosis of patients, who are often diagnosed too late at an incurable stage. Several studies report the dysregulation of lipid metabolism in tumor cells, suggesting that changes in the blood lipidome may accompany tumor growth.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
February 2022
Lung cancer represents one of the leading worldwide causes of cancer death, but the pathobiochemistry of this disease is still not fully understood. Here we characterize the lipidomic and metabolomic profiles of the tumor and surrounding normal tissues for 23 patients with non-small cell lung cancer. In total, 500 molecular species were identified and quantified by a combination of the lipidomic shotgun tandem mass spectrometry (MS/MS) analysis and the targeted metabolomic approach using liquid chromatography (LC) - MS/MS.
View Article and Find Full Text PDFSummary: We present the LipidQuant 1.0 tool for automated data processing workflows in lipidomic quantitation based on lipid class separation coupled with high-resolution mass spectrometry. Lipid class separation workflows, such as hydrophilic interaction liquid chromatography or supercritical fluid chromatography, should be preferred in lipidomic quantitation due to the coionization of lipid class internal standards with analytes from the same class.
View Article and Find Full Text PDFNegative-ion hydrophilic liquid chromatography-electrospray ionization mass spectrometry (HILIC/ESI-MS) method has been optimized for the quantitative analysis of ganglioside (GM3) and other polar lipid classes, such as sulfohexosylceramides (SulfoHexCer), sulfodihexosylceramides (SulfoHex2Cer), phosphatidylglycerols (PG), phosphatidylinositols (PI), lysophosphatidylinositols (LPI), and phosphatidylserines (PS). The method is fully validated for the quantitation of the studied lipids in kidney normal and tumor tissues of renal cell carcinoma (RCC) patients based on the lipid class separation and the coelution of lipid class internal standard with the species from the same lipid class. The raw data are semi-automatically processed using our software LipidQuant and statistically evaluated using multivariate data analysis (MDA) methods, which allows the complete differentiation of both groups with 100% specificity and sensitivity.
View Article and Find Full Text PDFThe hydrophilic interaction liquid chromatography (HILIC) coupled to a negative-ion electrospray ionization tandem mass spectrometry (ESI-MS/MS) method has been developed for the identification of a wide range of gangliosides in biological samples. Gangliosides consist of a backbone of sphingoid base and a polar oligosaccharide chain containing at least one sialic acid. Gangliosides are extracted by chloroform-methanol-water mixture, where an upper aqueous layer containing gangliosides and other polar lipid subclasses is further purified by C18 solid-phase extraction.
View Article and Find Full Text PDFLipidomic analysis of biological samples in a clinical research represents challenging task for analytical methods given by the large number of samples and their extreme complexity. In this work, we compare direct infusion (DI) and chromatography - mass spectrometry (MS) lipidomic approaches represented by three analytical methods in terms of comprehensiveness, sample throughput, and validation results for the lipidomic analysis of biological samples represented by tumor tissue, surrounding normal tissue, plasma, and erythrocytes of kidney cancer patients. Methods are compared in one laboratory using the identical analytical protocol to ensure comparable conditions.
View Article and Find Full Text PDFRationale: The goal of this work is the comparison of differences in the lipidomic compositions of human cell lines derived from normal and cancerous breast tissues, and tumor vs. normal tissues obtained after the surgery of breast cancer patients.
Methods: Hydrophilic interaction liquid chromatography/electrospray ionization mass spectrometry (HILIC/ESI-MS) using the single internal standard approach and response factors is used for the determination of relative abundances of individual lipid species from five lipid classes in total lipid extracts of cell lines and tissues.
Reversed-phase ultrahigh-performance liquid chromatography (RP-UHPLC) method using two 15cm sub-2μm particles octadecylsilica gel columns is developed with the goal to separate and unambiguously identify a large number of lipid species in biological samples. The identification is performed by the coupling with high-resolution tandem mass spectrometry (MS/MS) using quadrupole - time-of-flight (QTOF) instrument. Electrospray ionization (ESI) full scan and tandem mass spectra are measured in both polarity modes with the mass accuracy better than 5ppm, which provides a high confidence of lipid identification.
View Article and Find Full Text PDFThe goal of this work is a systematic optimization of hydrophilic interaction liquid chromatography (HILIC) separation of acidic lipid classes (namely phosphatidic acids-PA, lysophosphatidic acids-LPA, phosphatidylserines-PS and lysophosphatidylserines-LPS) and other lipid classes under mass spectrometry (MS) compatible conditions. The main parameters included in this optimization are the type of stationary phases used in HILIC, pH of the mobile phase, the type and concentration of mobile phase additives. Nine HILIC columns with different chemistries (unmodified silica, modified silica using diol, 2-picolylamine, diethylamine and 1-aminoanthracene and hydride silica) are compared with the emphasis on peak shapes of acidic lipid classes.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
September 2015
The characterization of differences among polar lipid classes in tumors and surrounding normal tissues of 20 kidney cancer patients is performed by hydrophilic interaction liquid chromatography (HILIC) coupled to electrospray ionization mass spectrometry (ESI-MS). The detailed analysis of identified lipid classes using relative abundances of characteristic ions in negative- and positive-ion modes is used for the determination of more than 120 individual lipid species containing attached fatty acyls of different chain length and double bond number. Lipid species are described using relative abundances, providing a better visualization of lipidomic differences between tumor and normal tissues.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
May 2015
Differences among lipidomic profiles of healthy volunteers, obese people and three groups of cardiovascular disease (CVD) patients are investigated with the goal to differentiate individual groups based on the multivariate data analysis (MDA) of lipidomic data from plasma, erythrocytes and lipoprotein fractions of more than 50 subjects. Hydrophilic interaction liquid chromatography on ultrahigh-performance liquid chromatography (HILIC-UHPLC) column coupled with electrospray ionization mass spectrometry (ESI-MS) is used for the quantitation of four classes of polar lipids (phosphatidylethanolamines, phosphatidylcholines, sphingomyelins and lysophosphatidylcholines), normal-phase UHPLC-atmospheric pressure chemical ionization MS (NP-UHPLC/APCI-MS) is applied for the quantitation of five classes of nonpolar lipids (cholesteryl esters, triacylglycerols, sterols, 1,3-diacylglycerols and 1,2-diacylglycerols) and the potential of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is tested for the fast screening of all lipids without a chromatographic separation. Obtained results are processed by unsupervised (principal component analysis) and supervised (orthogonal partial least squares) MDA approaches to highlight the largest differences among individual groups and to identify lipid molecules with the highest impact on the group differentiation.
View Article and Find Full Text PDFA new continuous comprehensive two-dimensional liquid chromatography-electrospray ionization mass spectrometry method has been developed for the lipidomic characterization of complex biological samples. The reversed-phase ultra-high-performance liquid chromatography with a C18 column (150 mm × 1 mm, 1.7 μm) used in the first dimension makes the separation of numerous lipid species differing in their hydrophobic part of the molecule, mainly fatty acyl chain lengths and the number and positions of double bonds, possible.
View Article and Find Full Text PDFA novel normal-phase (NP) ultrahigh-performance liquid chromatography-mass spectrometry (UHPLC/MS) method is developed for a separation and quantitation of nonpolar lipid classes occurring in human plasma, erythrocytes and plasma lipoprotein fractions. The baseline class separation of cholesteryl esters (CE), cholesterol, triacylglycerols (TG), regioisomers of 1,2- and 1,3-diacylglycerols (DG) and 1-monoacylglycerols (1-MG) is achieved using an optimized hexane - 2-propanol-acetonitrile mobile phase within 18min for all nonpolar lipid classes or only 9min excluding monoacylglycerols not detected in studied samples. The determination of individual nonpolar lipid classes is performed by the response factor approach and the use of dioleoyl ethylene glycol as a single internal standard.
View Article and Find Full Text PDFThe comprehensive approach for the lipidomic characterization of human breast cancer and surrounding normal tissues is based on hydrophilic interaction liquid chromatography (HILIC)-electrospray ionization mass spectrometry (ESI-MS) quantitation of polar lipid classes of total lipid extracts followed by multivariate data analysis using unsupervised principal component analysis (PCA) and supervised orthogonal partial least square (OPLS). This analytical methodology is applied for the detailed lipidomic characterization of ten patients with the goal to find the statistically relevant differences between tumor and normal tissues. This strategy is selected for better visualization of differences, because the breast cancer tissue is compared with the surrounding healthy tissue of the same patient, therefore changes in the lipidome are caused predominantly by the tumor growth.
View Article and Find Full Text PDFLipids form a significant part of animal organs and they are responsible for important biological functions, such as semi-permeability and fluidity of membranes, signaling activity, anti-inflammatory processes, etc. We have performed a comprehensive nontargeted lipidomic characterization of porcine brain, heart, kidney, liver, lung, spinal cord, spleen, and stomach using hydrophilic interaction liquid chromatography (HILIC) coupled to electrospray ionization mass spectrometry (ESI/MS) to describe the representation of individual lipid classes in these organs. Detailed information on identified lipid species inside classes are obtained based on relative abundances of deprotonated molecules [M-H](-) in the negative-ion ESI mass spectra, which provides important knowledge on phosphatidylethanolamines and their different forms of fatty acyl linkage (ethers and plasmalogens), phosphatidylinositols, and hexosylceramides containing nonhydroxy- and hydroxy-fatty acyls.
View Article and Find Full Text PDFThe identification and quantitation of a wide range of lipids in complex biological samples is an essential requirement for the lipidomic studies. High-performance liquid chromatography-mass spectrometry (HPLC/MS) has the highest potential to obtain detailed information on the whole lipidome, but the reliable quantitation of multiple lipid classes is still a challenging task. In this work, we describe a new method for the nontargeted quantitation of polar lipid classes separated by hydrophilic interaction liquid chromatography (HILIC) followed by positive-ion electrospray ionization mass spectrometry (ESI-MS) using a single internal lipid standard to which all class specific response factors (RFs) are related to.
View Article and Find Full Text PDFLipids are important components in all biological tissues having many essential roles associated with the proper function of the organism. Their analysis in the biological tissues and body fluids is a challenging task due to the extreme sample complexity of polar lipids and to their amphiphilic character. In this work, we describe a new method for the characterization of the lipid composition in various tissues, using off-line two-dimensional coupling of hydrophilic interaction liquid chromatography (HILIC) and reversed-phase (RP) high-performance liquid chromatography coupled to electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) mass spectrometry.
View Article and Find Full Text PDF