IEEE Trans Neural Netw Learn Syst
November 2017
This brief presents a novel learning scheme for categorical data based on radial basis function (RBF) networks. The proposed approach replaces the numerical vectors known as RBF centers with categorical tuple centers, and employs specially designed measures for calculating the distance between the center and the input tuples. Furthermore, a fast noniterative categorical clustering algorithm is proposed to accomplish the first stage of RBF training involving categorical center selection, whereas the weights are calculated through linear regression.
View Article and Find Full Text PDFObjective: The profusion of data accumulating in the form of medical records could be of great help for developing medical decision support systems. The objective of this paper is to present a methodology for designing data-driven medical diagnostic tools, based on neural network classifiers.
Methods: The proposed approach adopts the radial basis function (RBF) neural network architecture and the non-symmetric fuzzy means (NSFM) training algorithm, which presents certain advantages including better approximation capabilities and shorter computational times.