Plant postembryonic development takes place in the meristems, where stem cells self-renew and produce daughter cells that differentiate and give rise to different organ structures. For the maintenance of meristems, the rate of differentiation of daughter cells must equal the generation of new cells: How this is achieved is a central question in plant development. In the Arabidopsis root meristem, stem cells surround a small group of organizing cells, the quiescent center.
View Article and Find Full Text PDFMild heat shock treatment (32 degrees C) of isolated Brassica napus microspores triggers a developmental switch from pollen maturation to embryo formation. This in vitro system was used to identify genes expressed in globular to heart-shape transition embryos. One of the genes isolated encodes a putative extra-cellular protein that exhibits high sequence similarity with the in silico identified CLV3/ESR-related 19 polypeptide from Arabidopsis (AtCLE19) and was therefore named BnCLE19.
View Article and Find Full Text PDFIn the Arabidopsis shoot apical meristem, an organizing center signals in a non-cell-autonomous manner to specify the overlying stem cells. Stem cells express the small, secreted protein CLAVATA3 (CLV3; ) that activates the CLV1-CLV2 receptor complex, which negatively controls the size of the organizing center. Consistently, CLV3 overexpression restricts shoot meristem size.
View Article and Find Full Text PDF