Publications by authors named "Eva C Hermans"

Neonatal hypoxic-ischemic (HI) brain injury is a prominent cause of neurological morbidity, urging the development of novel therapies. Interventions with -3 long-chain polyunsaturated fatty acids (-3 LCPUFAs) and mesenchymal stem cells (MSCs) provide neuroprotection and neuroregeneration in neonatal HI animal models. While lysophosphatidylcholine (LPC)-bound -3 LCPUFAs enhance brain incorporation, their effect on HI brain injury remains unstudied.

View Article and Find Full Text PDF

Neonatal hypoxic-ischemic (HI) brain injury leads to cognitive impairments including social communication disabilities. Current treatments do not sufficiently target these impairments, therefore new tools are needed to examine social communication in models for neonatal brain injury. Ultrasonic vocalizations (USVs) during early life show potential as a measurement for social development and reflect landmark developmental stages in neonatal mice.

View Article and Find Full Text PDF

Background: Hypoxic-Ischemic Encephalopathy (HIE) is a leading cause of mortality and morbidity in newborns. Recent research has shown promise in using intranasal mesenchymal stem cell (MSC) therapy if administered within 10 days after Hypoxia-Ischemia (HI) in neonatal mice. MSCs migrate from the nasal cavity to the cerebral lesion in response to chemotactic cues.

View Article and Find Full Text PDF