Publications by authors named "Eva Betthausen"

We investigate a morphological transition of surface-immobilized triblock terpolymer micelles: the splitting into well-defined clusters of satellite micelles upon pH changes. The multicompartment micelles are formed in aqueous solution of ABC triblock terpolymers consisting of a hydrophobic polybutadiene block, a weak polyanionic poly(methacrylic acid) block, and a weak polycationic poly(2-(dimethylamino)ethyl methacrylate) block. They are subsequently immobilized on silicon wafer surfaces by dip-coating.

View Article and Find Full Text PDF

The controlled nonviral delivery of genetic material using cationic polymers into cells has been of interest during the past three decades, yet the ideal delivery agent featuring utmost transfection efficiency and low cytotoxicity still has to be developed. Here, we demonstrate that multicompartment micelles from stimuli-responsive triblock terpolymers, polybutadiene-block-poly(methacrylic acid)-block-poly(2-(dimethylamino)ethyl methacrylate) (BMAAD), are promising candidates. The structures exhibit a patchy shell, consisting of amphiphilic (interpolyelectrolyte complexes, MAA and D) and cationic patches (excess D), generating a surface reminiscent to those of certain viruses and capable of undergoing pH-dependent changes in charge stoichiometry.

View Article and Find Full Text PDF

The design of the 3D architecture surfaces with both space- and time-dependent functionality (cell attraction, pH-trigged self-cleaning, antiseptic/disinfection) is in the focus. The innovative story includes: sonochemical surface activation, formation of feedback surface component (pH-responsible micelles), proof of responsive activity (time resolved cell adhesion and bacteria deactivation) and space adhesion selectivity (surface patterning).

View Article and Find Full Text PDF

Dynamic core-shell-shell-corona micelles are formed between two oppositely charged block copolymer systems. Preformed polybutadiene-block-poly(N-methyl-2-vinylpyridinium)-block-poly(methacrylic acid) (PB-P2VPq-PMAA) block terpolymer micelles with a soft polybutadiene core, an interpolyelectrolyte complex (IPEC) shell made out of poly(N-methyl-2-vinylpyridinium) and poly(methacrylic acid), and a negatively charged PMAA corona were mixed in different ratios at high pH with positively charged poly(N-methyl-2-vinylpyridinium)-block-poly(ethylene oxide) (P2VPq-PEO) diblock copolymers. Under these conditions, mixing results in the formation of a second IPEC shell onto the PB-P2VPq-PMAA precursor micelles, surrounded by a PEO corona.

View Article and Find Full Text PDF