Cell adhesion is generally considered to depend on positive regulation through ligation of integrins and cytokine receptors. However, here we show that T-cell adhesion, and notably also T-cell receptor (TCR) -induced activation, are subject to constant suppression through shedding of low-density lipoprotein receptor-related protein 1 (LRP1). The broad-spectrum metalloprotease inhibitor GM6001 abrogated shedding, so inducing prominent cell surface expression of LRP1 while enhancing TCR-induced activation and adhesion to β and β integrin ligands, hence arresting the cells.
View Article and Find Full Text PDFMethotrexate (MTX) is a widely used treatment for inflammatory diseases such as rheumatoid arthritis and psoriasis, based on the concept that it is immunosuppressive. Its mechanism of action, however, remains unclear, although it is thought to depend on adenosine. Caffeine and theophylline, which have several targets including adenosine receptors, have been shown to suppress the beneficial clinical effects of MTX.
View Article and Find Full Text PDFAntigen recognition reduces T-cell motility, and induces prolonged contact with antigen-presenting cells and activation through mechanisms that remain unclear. Here we show that the T-cell receptor (TCR) and CD28 regulate T-cell motility, contact with antigen-presenting cells and activation through endogenous thrombospondin-1 (TSP-1) and its receptors low-density lipoprotein receptor-related protein 1 (LRP1), calreticulin and CD47. Antigen stimulation induced a prominent up-regulation of TSP-1 expression, and transiently increased and subsequently decreased LRP1 expression whereas calreticulin was unaffected.
View Article and Find Full Text PDFT lymphocytes are highly motile and constantly reposition themselves between a free-floating vascular state, transient adhesion and migration in tissues. The regulation behind this unique dynamic behaviour remains unclear. Here we show that T cells have a cell surface mechanism for integrated regulation of motility and adhesion and that integrin ligands and CXCL12/SDF-1 influence motility and adhesion through this mechanism.
View Article and Find Full Text PDFThe co-ordination of T-cell motility, adhesion and activation remains poorly understood. It is also unclear how these functions are co-ordinated with external stimuli. Here we unveil a series of molecular interactions in cis at the surface of T lymphocytes with potent effects on motility and adhesion in these cells, and communicating with proliferative responses.
View Article and Find Full Text PDF