The polarity of a surface can affect the electronic and structural properties of oxide thin films through electrostatic effects. Understanding the mechanism behind these effects requires knowledge of the atomic structure and electrostatic characteristics at the surface. In this study, we use annular bright-field imaging to investigate the surface structure of a PrSrNiO (0 < x < 1) film.
View Article and Find Full Text PDFThe interface polarity plays a vital role in the physical properties of oxide heterointerfaces because it can cause specific modifications of the electronic and atomic structure. Reconstruction due to the strong polarity of the NdNiO/SrTiO interface in recently discovered superconducting nickelate films may play an important role, as no superconductivity has been observed in the bulk. By employing four-dimensional scanning transmission electron microscopy and electron energy-loss spectroscopy, we studied effects of oxygen distribution, polyhedral distortion, elemental intermixing, and dimensionality in NdNiO/SrTiO superlattices grown on SrTiO (001) substrates.
View Article and Find Full Text PDFThe detection and manipulation of antiferromagnetic domains and topological antiferromagnetic textures are of central interest to solid-state physics. A fundamental step is identifying tools to probe the mesoscopic texture of an antiferromagnetic order parameter. In this work, we demonstrate that Bragg coherent diffractive imaging can be extended to study the mesoscopic texture of an antiferromagnetic order parameter using resonant magnetic x-ray scattering.
View Article and Find Full Text PDFRuddlesden-Popper (RP) faults have emerged as a promising candidate for defect engineering in epitaxial ABO perovskites. Functionalities could be fine-tuned by incorporating RP faults into ABO thin films and superlattices. However, due to the lattice expansion at AO-AO interfaces, it is generally believed that RP faults are only energetically favorable under tensile strain.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2018
Transition metal oxides exhibit a high potential for application in the field of electronic devices, energy storage, and energy conversion. The ability of building these types of materials by atomic layer-by-layer techniques provides a possibility to design novel systems with favored functionalities. In this study, by means of the atomic layer-by-layer oxide molecular beam epitaxy technique, we designed oxide heterostructures consisting of tetragonal KNiF-type insulating LaCuO (LCO) and perovskite-type conductive metallic LaNiO (LNO) layers with different thicknesses to assess the heterostructure-thermoelectric property-relationship at high temperatures.
View Article and Find Full Text PDFThe electronic phase behavior and functionality of interfaces and surfaces in complex materials are strongly correlated to chemical composition profiles, stoichiometry and intermixing. Here a novel analysis scheme for resonant X-ray reflectivity maps is introduced to determine such profiles, which is element specific and non-destructive, and which exhibits atomic-layer resolution and a probing depth of hundreds of nanometers.
View Article and Find Full Text PDFA combined synchrotron X-ray diffraction and transmission electron microscopy study reveals a structural phase transition controlled by the overall thickness of epitaxial nickelate-aluminate superlattices. The transition between uniform and twin-domain states is confined to the nickelate layers and leaves the aluminate layers unaffected.
View Article and Find Full Text PDFThe occupation of d orbitals controls the magnitude and anisotropy of the inter-atomic electron transfer in transition-metal oxides and hence exerts a key influence on their chemical bonding and physical properties. Atomic-scale modulations of the orbital occupation at surfaces and interfaces are believed to be responsible for massive variations of the magnetic and transport properties, but could not thus far be probed in a quantitative manner. Here we show that it is possible to derive quantitative, spatially resolved orbital polarization profiles from soft-X-ray reflectivity data, without resorting to model calculations.
View Article and Find Full Text PDF