Glutamate is the main neurotransmitter released at synapses in the central nervous system of vertebrates. Its excitatory role is mediated through activation of specific glutamatergic ionotropic receptors, among which the N-methyl-D-aspartate (NMDA) receptor subtype has attracted considerable attention in recent years. Substantial progress has been made in elucidating the roles these receptors play under physiological and pathological conditions and in our understanding of the functional, structural, and pharmacological properties of NMDA receptors.
View Article and Find Full Text PDFPreclinical studies have demonstrated a considerable role for N-methyl-d-aspartate (NMDA) receptors in excitotoxicity and the concurrent neuroprotective effect of NMDA receptor antagonists. Because NMDA receptors are one of the most widespread receptors in the central nervous system, application of their antagonist often leads to serious side effects ranging from motor impairment to induction of schizophrenic-like psychosis. Therefore, we have initiated development and testing of a novel synthetic NMDA receptor antagonist derived from naturally occurring neurosteroids.
View Article and Find Full Text PDF