Even though respiratory dysfunctions are the primary symptom associated with SARS-CoV-2 infection, cerebrovascular events, and neurological symptoms are described in many patients. However, the connection between the neuroimmune profile and the lung's inflammatory condition during COVID-19 and its association with the neurological symptoms reported by COVID-19 patients still needs further exploration. The present study characterizes the SARS-CoV-2 infectivity profile in nervous and lung tissue samples of patients who died due to severe COVID-19, and the pro-inflammatory factors present in both nervous and lung tissue samples, via a proteomic profiling array.
View Article and Find Full Text PDFObjectives: To determine the inflammatory profile of CRSwNP in Brazil and characterize the subgroups of CRSwNP patients in this population through cluster analysis.
Study Design: Multicenter cross-sectional study involving 15 centers representing different regions of Brazil.
Subjects And Methods: Clinical data of 166 patients and 80 controls, aged 18 to 70 years old, number of surgeries for CRS, history of asthma and aspirin sensitivity, and Lund-Mackay scores on CT scans.
COVID-19 has affected more than half a billion people worldwide, with more than 6.3 million deaths, but the pathophysiological mechanisms involved in lethal cases and the host determinants that determine the different clinical outcomes are still unclear. In this study, we assessed lung autopsies of 47 COVID-19 patients and examined the inflammatory profiles, viral loads, and inflammasome activation.
View Article and Find Full Text PDFOrosomucoid, or alpha-1 acid glycoprotein (AGP), is a major acute-phase protein expressed in response to systemic injury and inflammation. AGP has been described as an inhibitor of neutrophil migration on sepsis, particularly its immunomodulation effects. AGP's biological functions in coronavirus disease 2019 (COVID-19) are not understood.
View Article and Find Full Text PDFBackground: Inflammation in the lungs and other vital organs in COVID-19 is characterized by the presence of neutrophils and a high concentration of neutrophil extracellular traps (NETs), which seems to mediate host tissue damage. However, it is not known whether NETs could have virucidal activity against SARS-CoV-2.
Methods: We investigated whether NETs could prevent SARS-CoV-2 replication in neutrophils and epithelial cells and what the consequence of NETs degradation would be in K18-humanized ACE2 transgenic mice infected with SARS-CoV-2.
Background: COVID-19 causes consequences such as imbalance of the immune system and thrombotic events. During the infection process, NETs in excess induce a pro-inflammatory response and disseminated intravascular coagulation. We evaluated the role of enoxaparin as a potential inhibitor of NETs.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are biomolecule carriers for intercellular communication in health and disease. Nef is a HIV virulence factor that is released from cells within EVs and is present in plasma EVs of HIV-1 infected individuals. We performed a quantitative proteomic analysis to fully characterize the Nef-induced changes in protein composition of T cell-derived EVs and identify novel host targets of HIV.
View Article and Find Full Text PDFIn the present study, we show that SARS-CoV-2 can infect palatine tonsils, adenoids, and secretions in children without symptoms of COVID-19, with no history of recent upper airway infection. We studied 48 children undergoing tonsillectomy due to snoring/OSA or recurrent tonsillitis between October 2020 and September 2021. Nasal cytobrushes, nasal washes, and tonsillar tissue fragments obtained at surgery were tested by RT-qPCR, immunohistochemistry (IHC), flow cytometry, and neutralization assay.
View Article and Find Full Text PDFBackground: Sex-determined differences are rarely addressed in the management of diseases, despite well-known contrasting outcomes between female and male patients. In COVID-19 there is a remarkable disparity, with higher rates of mortality and more severe acute disease in men compared to women, who are mostly affected by long COVID-19. Furthermore, whether androgens play a protective or detrimental role in COVID-19 is still a matter of debate.
View Article and Find Full Text PDFSci Rep
August 2023
The TIGITFOXP3Treg subset (TIGITTregs) exerts robust suppressive activity on cellular immunity and predisposes septic individuals to opportunistic infection. We hypothesized that TIGITTregs could play an important role in intensifying the COVID-19 severity and hampering the defense against nosocomial infections during hospitalization. Herein we aimed to verify the association between the levels of the TIGITTregs with the mechanical ventilation requirement, fatal outcome, and bacteremia during hospitalization.
View Article and Find Full Text PDFThe cytokine storm in SARS-CoV-2 infection contributes to the onset of inflammation and target-organ damage. The endothelium is a key player in COVID-19 pathophysiology and it is an important target for cytokines. Considering that cytokines trigger oxidative stress and negatively impact endothelial cell function, we sought to determine whether serum from individuals with severe COVID-19 decreases endothelial cells' main antioxidant defense, i.
View Article and Find Full Text PDFOccurrence of hyperglycemia upon infection is associated with worse clinical outcome in COVID-19 patients. However, it is still unknown whether SARS-CoV-2 directly triggers hyperglycemia. Herein, we interrogated whether and how SARS-CoV-2 causes hyperglycemia by infecting hepatocytes and increasing glucose production.
View Article and Find Full Text PDFPatients with severe COVID-19 develop acute respiratory distress syndrome (ARDS) that may progress to cytokine storm syndrome, organ dysfunction, and death. Considering that complement component 5a (C5a), through its cellular receptor C5aR1, has potent proinflammatory actions and plays immunopathological roles in inflammatory diseases, we investigated whether the C5a/C5aR1 pathway could be involved in COVID-19 pathophysiology. C5a/C5aR1 signaling increased locally in the lung, especially in neutrophils of critically ill patients with COVID-19 compared with patients with influenza infection, as well as in the lung tissue of K18-hACE2 Tg mice (Tg mice) infected with SARS-CoV-2.
View Article and Find Full Text PDFBackground: COVID-19 is characterized by severe acute lung injury, which is associated with neutrophil infiltration and the release of neutrophil extracellular traps (NETs). COVID-19 treatment options are scarce. Previous work has shown an increase in NETs release in the lung and plasma of COVID-19 patients suggesting that drugs that prevent NETs formation or release could be potential therapeutic approaches for COVID-19 treatment.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection triggers activation of the NLRP3 inflammasome, which promotes inflammation and aggravates severe COVID-19. Here, we report that SARS-CoV-2 induces upregulation and activation of human caspase-4/CASP4 (mouse caspase-11/CASP11), and this process contributes to NLRP3 activation. In vivo infections performed in transgenic hACE2 humanized mice, deficient or sufficient for Casp11, indicate that hACE2 Casp11-/- mice were protected from disease development, with the increased pulmonary parenchymal area, reduced clinical score of the disease, and reduced mortality.
View Article and Find Full Text PDFVertical transmission of Chikungunya virus (CHIKV) has been reported in humans, but the transmission routes have not been completely understood, and experimental animal models are needed to enable detailed investigation of the transmission and pathogenesis of congenital infections. The intertwining of immune response and virus components at the gestation/breastfeeding interfaces between mother and fetus/newborn may have effects during the offspring development. An experimental model of CHIKV was established by infecting pregnant BALB/c female mice that enabled confirmation that dams inoculated up to the 10 gestational day transmit CHIKV transplacentally to approximately 8.
View Article and Find Full Text PDFHemorrhagic fever viruses (HFVs) pose a threat to global public health owing to the emergence and re-emergence of highly fatal diseases. Viral hemorrhagic fevers (VHFs) caused by these viruses are mostly characterized by an acute febrile syndrome with coagulation abnormalities and generalized hemorrhage that may lead to life-threatening organ dysfunction. Currently, the events underlying the viral pathogenicity associated with multiple organ dysfunction syndrome still underexplored.
View Article and Find Full Text PDFVisceral adiposity is a risk factor for severe COVID-19, and a link between adipose tissue infection and disease progression has been proposed. Here we demonstrate that SARS-CoV-2 infects human adipose tissue and undergoes productive infection in fat cells. However, susceptibility to infection and the cellular response depends on the anatomical origin of the cells and the viral lineage.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces mild or asymptomatic COVID-19 in most cases, but some patients develop an excessive inflammatory process that can be fatal. As the NLRP3 inflammasome and additional inflammasomes are implicated in disease aggravation, drug repositioning to target inflammasomes emerges as a strategy to treat COVID-19. Here, we performed a high-throughput screening using a 2560 small-molecule compound library and identified FDA-approved drugs that function as pan-inflammasome inhibitors.
View Article and Find Full Text PDFThe quantum-rate model predicts a rate as a frequency for transporting electrons within molecular structures, which is governed by the ratio between the quantum of conductance and capacitance , such that = /. This frequency, as measured in a single-layer graphene appropriately modified with suitable biological receptors, can be applied as a transducer signal that ranges sensitivities within the attomole for biosensing applications. Here, we applied this label-free and reagentless biosensing transducer signal methodology for the qualitative diagnosis of COVID-19 infections, where this assay methodology was shown to be similar to the gold-standard real-time polymerase chain reaction.
View Article and Find Full Text PDFThe global emergence of coronavirus disease 2019 (COVID-19) has caused substantial human casualties. Clinical manifestations of this disease vary from asymptomatic to lethal, and the symptomatic form can be associated with cytokine storm and hyperinflammation. In face of the urgent demand for effective drugs to treat COVID-19, we have searched for candidate compounds using in silico approach followed by experimental validation.
View Article and Find Full Text PDFAlthough increasing evidence confirms neuropsychiatric manifestations associated mainly with severe COVID-19 infection, long-term neuropsychiatric dysfunction (recently characterized as part of "long COVID-19" syndrome) has been frequently observed after mild infection. We show the spectrum of cerebral impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, ranging from long-term alterations in mildly infected individuals (orbitofrontal cortical atrophy, neurocognitive impairment, excessive fatigue and anxiety symptoms) to severe acute damage confirmed in brain tissue samples extracted from the orbitofrontal region (via endonasal transethmoidal access) from individuals who died of COVID-19. In an independent cohort of 26 individuals who died of COVID-19, we used histopathological signs of brain damage as a guide for possible SARS-CoV-2 brain infection and found that among the 5 individuals who exhibited those signs, all of them had genetic material of the virus in the brain.
View Article and Find Full Text PDFBackground: The release of neutrophil extracellular traps (NETs) is associated with inflammation, coagulopathy, and organ damage found in severe cases of COVID-19. However, the molecular mechanisms underlying the release of NETs in COVID-19 remain unclear.
Objectives: We aim to investigate the role of the Gasdermin-D (GSDMD) pathway on NETs release and the development of organ damage during COVID-19.
Patients with COVID-19 predominantly have a respiratory tract infection and acute lung failure is the most severe complication. While the molecular basis of SARS-CoV-2 immunopathology is still unknown, it is well established that lung infection is associated with hyper-inflammation and tissue damage. Matrix metalloproteinases (MMPs) contribute to tissue destruction in many pathological situations, and the activity of MMPs in the lung leads to the release of bioactive mediators with inflammatory properties.
View Article and Find Full Text PDFJ Med Virol
September 2022
We adopted the reverse-transcriptase-loop-mediated isothermal amplification (RT-LAMP) to detect severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) in patient samples. Two primer sets for genes N and Orf1ab were designed to detect SARS-CoV-2, and one primer set was designed to detect the human gene Actin. We collected prospective 138 nasopharyngeal swabs, 70 oropharyngeal swabs, 69 salivae, and 68 mouth saline wash samples from patients suspected to have severe acute respiratory syndrome (SARS) caused by SARS-CoV-2 to test the RT-LAMP in comparison with the gold standard technique reverse-transcription quantitative polymerase chain reaction (RT-qPCR).
View Article and Find Full Text PDF