In this work, the formation of uranium species and their stabilities in Na-U(VI)-CO(3)-OH-H(2)O(2) solutions at different pHs are studied by Raman spectroscopy. In this solution, the UO(2)(O(2))(CO(3))(2)(4-) species was formed together with three other uranium species of UO(2)(O(2))(2)(2-), UO(2)(CO(3))(3)(4-), and a speculated uranium species of the uranyl carbonate hydroxide complex, UO(2)(CO(3))(x)(OH)(y)(2-2x-y), which showed remarkable Raman peaks at approximately 769, 848, 811, and 727 cm(-1), respectively. The UO(2)(O(2))(CO(3))(2)(4-) species disappeared at pH conditions where bicarbonate dominated, and its Raman peak could be clearly observed in only a narrow pH range from approximately 9 to 12.
View Article and Find Full Text PDFCorrelations among the alpha activity ratios of (238)Pu/((239)Pu+(240)Pu), the alpha specific activities of Pu and the atom % abundances of Pu isotopes were derived for the plutonium samples obtained from high burnup fuel samples from pressurized water reactors. Using the alpha activity ratios of (238)Pu/((239)Pu+(240)Pu) determined by alpha spectrometry, the alpha specific activities of Pu as well as the atom % abundances of the plutonium isotopes in the unknown samples were calculated without depending on mass spectrometry. The calculated alpha specific activities of Pu agreed with those determined by experiment within 2%, and the atom % abundances of the Pu isotopes agreed within 4% for (238)Pu, 5% for (239)Pu, 7% for (240)Pu and 5% for (242)Pu, respectively.
View Article and Find Full Text PDFPhotoionization detector (PID) was developed for a sensitive on-site detection of trace amounts of volatile organic compounds (VOCs) based on an annular type ion collection electrode assembly. An ion collector with an annular geometry could detect more stable ion signals in the PID system when compared to the other types of ion collectors when an UV lamp of 10.6 eV was used as an ionization source.
View Article and Find Full Text PDF