Publications by authors named "Eunson Jung"

Secondary lymphedema is a debilitating disease characterized by abnormal soft tissue swelling and caused by lymphatic system dysfunction. Despite a high prevalence of secondary lymphedema after cancer treatments, current management is supportive and there are no approved therapeutic agents that can thwart disease progression. We have previously demonstrated that 9-cis-retinoic acid (9-cisRA) has the potential to be repurposed for lymphedema as it mitigates disease by promoting lymphangiogenesis at the site of lymphatic injury.

View Article and Find Full Text PDF

Patients undergoing surgical treatment for solid tumors are at risk for development of secondary lymphedema due to intraoperative lymphatic vessel injury. The damaged lymphatic vessels fail to adequately regenerate and lymphatic obstruction leads to fluid and protein accumulation in the interstitial space and chronic lymphedema develops as a result. There are currently no effective pharmacological agents that reduce the risk of developing lymphedema or treat pre-existing lymphedema, and management is largely palliative.

View Article and Find Full Text PDF

Glaucoma surgeries, such as trabeculectomy, are performed to lower intraocular pressure to reduce risk of vision loss. These surgeries create a new passage in the eye that reroutes the aqueous humor outflow to the subconjunctival space, where the fluid is presumably absorbed by the conjunctival lymphatics. Here, we characterized the development and function of the ocular lymphatics using transgenic lymphatic reporter mice and rats.

View Article and Find Full Text PDF

Kaposi sarcoma is the most common cancer in human immunodeficiency virus-positive individuals and is caused by Kaposi sarcoma-associated herpesvirus (KSHV). It is believed that a small number of latently infected Kaposi sarcoma tumor cells undergo spontaneous lytic reactivation to produce viral progeny for infection of new cells. Here, we use matched donor-derived human dermal blood and lymphatic endothelial cells (BEC and LEC, respectively) to show that KSHV-infected BECs progressively lose viral genome as they proliferate.

View Article and Find Full Text PDF

Ionizing radiation, commonly used in the treatment of solid tumors, has unintended but deleterious effects on overlying skin and is associated with chronic nonhealing wounds. Skin-derived mesenchymal stromal cells (SMSCs) are a pluripotent population of cells that are critically involved in skin homeostasis and wound healing. The aim of this study was to isolate and functionally characterize SMSCs from human skin that was previously irradiated as part of neoadjuvant or adjuvant cancer therapy.

View Article and Find Full Text PDF

The lymphatic system plays crucial roles in tissue homeostasis, lipid absorption, and immune cell trafficking. Although lymphatic valves ensure unidirectional lymph flows, the flow itself controls lymphatic valve formation. Here, we demonstrate that a mechanically activated ion channel Piezo1 senses oscillating shear stress (OSS) and incorporates the signal into the genetic program controlling lymphatic valve development and maintenance.

View Article and Find Full Text PDF

Background: The fibroblast growth factor receptor (FGFR) family includes transmembrane receptors involved in a wide range of developmental and postdevelopmental biologic processes as well as a wide range of human diseases. In particular, FGFR3 has been implicated in the mechanism by which 9-cis retinoic acid (9-cisRA) induces lymphangiogenesis and improves lymphedema. The purpose of this study was to validate the efficacy of a novel small peptide FGFR3 inhibitor, peptide P3 (VSPPLTLGQLLS), and to elucidate the role of FGFR3 in 9-cisRA-induced lymphangiogenesis using this peptide.

View Article and Find Full Text PDF
Article Synopsis
  • - Carpometacarpal joint osteoarthritis impacts 8-12% of people, and while surgery helps 78% of those not responding to other treatments, there's no clear agreement on the best surgical method; recent studies have looked at using acellular dermal matrices instead of traditional implants.
  • - In a study using New Zealand rabbits, researchers compared implants of acellular dermal matrix and autologous tissue after removing the lunate carpal bones, analyzing the results through various histological techniques over 12 weeks.
  • - Results showed that acellular dermal matrices led to significant increases in blood vessel formation in both the joint and subcutaneous areas, while autologous tissue did not show similar vascular growth; overall,
View Article and Find Full Text PDF

The lymphatic system plays a key role in tissue fluid homeostasis, immune cell trafficking, and fat absorption. We previously reported a bacterial artificial chromosome (BAC)-based lymphatic reporter mouse, where EGFP is expressed under the regulation of the Prox1 promoter. This reporter line has been widely used to conveniently visualize lymphatic vessels and other Prox1-expressing tissues such as Schlemm's canal.

View Article and Find Full Text PDF

The major function of the lymphatic system is to drain interstitial fluid from tissue. Functional drainage causes increased fluid flow that triggers lymphatic expansion, which is conceptually similar to hypoxia-triggered angiogenesis. Here, we have identified a mechanotransduction pathway that translates laminar flow-induced shear stress to activation of lymphatic sprouting.

View Article and Find Full Text PDF

Rationale: Lymphatic vessels function to drain interstitial fluid from a variety of tissues. Although shear stress generated by fluid flow is known to trigger lymphatic expansion and remodeling, the molecular basis underlying flow-induced lymphatic growth is unknown.

Objective: We aimed to gain a better understanding of the mechanism by which laminar shear stress activates lymphatic proliferation.

View Article and Find Full Text PDF
Article Synopsis
  • Recent advancements have led to the development of lymphatic reporter mouse lines that enhance imaging of lymphatic vessels.
  • This study introduces a new Prox1-tdTomato transgenic mouse line, allowing researchers to directly visualize lymphatic vessels for better assessment of various conditions.
  • Additionally, embryonic stem cells from this line were differentiated into lymphatic vessels in vivo, providing valuable tools for lymphatic research.
View Article and Find Full Text PDF

Objective: To determine the effect of 9-cis retinoic acid (9-cis RA) on postsurgical lymphedema.

Background: 9-cis RA promotes lymphangiogenesis in vitro and in vivo and has promise as a therapeutic agent to limit the development of postsurgical lymphedema.

Methods: Lymphedema was induced in the right hind limb after a single fraction of 20 Gy radiation, popliteal lymphadenectomy, and lymphatic vessel ablation.

View Article and Find Full Text PDF

Papillary thyroid cancer (PTC) is one of the most common endocrine malignancies associated with significant morbidity and mortality. Although multiple studies have contributed to a better understanding of the genetic alterations underlying this frequently arising disease, the downstream molecular effectors that impact PTC pathogenesis remain to be further defined. Here, we report that the regulator of cell fate specification, PROX1, becomes inactivated in PTC through mRNA downregulation and cytoplasmic mislocalization.

View Article and Find Full Text PDF

Small chemical compound sulindac has been approved as a preventive approach against colon cancer for its effectiveness in treatment of precancerous adenoma. Due to its severe toxicities in the cardiovascular, gastrointestinal and renal systems, however, a combination of low-dose sulindac with other chemopreventive agents has been sought after as an alternative therapeutic strategy that could increase its effectiveness, while minimizing its adverse effects. To identify the promising alternative approach, we investigated the therapeutic potential of targeting the interleukin (IL)-8/CXCR2 pathway in colon cancer treatment using both loss-of-function (CXCR2 knockout) and gain-of-function (IL-8 overexpression) mouse models, as the IL-8/CXCR2 pathway has been shown to be activated in intestinal tumors of both human and experimental animals.

View Article and Find Full Text PDF