Publications by authors named "Eunmi Chae"

An elementary review on principles of qubits and their prospects for quantum computing is provided. Due to its rapid development, quantum computing has attracted considerable attention as a core technology for the next generation and has demonstrated its potential in simulations of exotic materials, molecular structures, and theoretical computer science. To achieve fully error-corrected quantum computers, building a logical qubit from multiple physical qubits is crucial.

View Article and Find Full Text PDF

Ultracold polar molecules are promising candidate qubits for quantum computing and quantum simulations. Their long-lived molecular rotational states form robust qubits, and the long-range dipolar interaction between molecules provides quantum entanglement. In this work, we demonstrate dipolar spin-exchange interactions between single calcium monofluoride (CaF) molecules trapped in an optical tweezer array.

View Article and Find Full Text PDF

Here, ultra-low relative phase jitters over a wide optical spectrum were achieved for dual Ti:Sapphire optical frequency combs. The two optical frequency combs were independently phase-locked to a Sr optical lattice clock laser delivered through a commercial optical fiber network. We confirmed that the relative phase jitters between the two combs integrated from 8.

View Article and Find Full Text PDF

Qubit coherence times are critical to the performance of any robust quantum computing platform. For quantum information processing using arrays of polar molecules, a key performance parameter is the molecular rotational coherence time. We report a 93(7) ms coherence time for rotational state qubits of laser cooled CaF molecules in optical tweezer traps, over an order of magnitude longer than previous systems.

View Article and Find Full Text PDF

Harnessing the potential wide-ranging quantum science applications of molecules will require control of their interactions. Here, we used microwave radiation to directly engineer and tune the interaction potentials between ultracold calcium monofluoride (CaF) molecules. By merging two optical tweezers, each containing a single molecule, we probed collisions in three dimensions.

View Article and Find Full Text PDF

Diatomic polar molecules are one of the most promising platforms of quantum computing due to their rich internal states and large electric dipole moments. Here, we propose entangling rotational states of MgF molecules in an optical tweezer array via strong electric dipole-dipole interactions. We employ two rotational states with the projection quantum number of the total angular momentum MF = 0 to maximize the dipole-dipole interaction with a given separation distance.

View Article and Find Full Text PDF

We report on an ultralow noise optical frequency transfer from a remotely located Sr optical lattice clock laser to a Ti:Sapphire optical frequency comb through telecom-wavelength optical fiber networks. The inherent narrow linewidth of the Ti:Sapphire optical frequency comb eliminates the need for a local reference high-finesse cavity. The relative fractional frequency instability of the optical frequency comb with respect to the remote optical reference was 6.

View Article and Find Full Text PDF

We demonstrate significantly improved magneto-optical trapping of molecules using a very slow cryogenic beam source and either rf modulated or dc magnetic fields. The rf magneto-optical trap (MOT) confines 1.0(3)×10^{5} CaF molecules at a density of 7(3)×10^{6}  cm^{-3}, which is an order of magnitude greater than previous molecular MOTs.

View Article and Find Full Text PDF

We demonstrate the mixing of rotational states in the ground electronic state using microwave radiation to enhance optical cycling in the molecule yttrium (II) monoxide (YO). This mixing technique is used in conjunction with a frequency modulated and chirped continuous wave laser to slow longitudinally a cryogenic buffer-gas beam of YO. We generate a flux of YO below 10 m/s, directly loadable into a three-dimensional magneto-optical trap.

View Article and Find Full Text PDF

We present a quantitative study of suppression of cold inelastic collisions by the spin-orbit interaction. We prepare cold ensembles of >10(11) Al(2P(1/2)) atoms via cryogenic buffer-gas cooling and use a single-beam optical pumping method to measure their magnetic (m(J)-changing) and fine-structure (J-changing) collisions with 3He atoms at millikelvin temperatures over a range of magnetic fields from 0.5 to 6 T.

View Article and Find Full Text PDF