Publications by authors named "Eunmi Ban"

Natural isoflavones are recognized for their diverse pharmacological activities; however, their low aqueous solubility presents a significant challenge for further development. Here, we aimed to develop a cocrystal of formononetin (FMN) to improve its solubility. The formononetin-imidazole (FMN-IMD) cocrystal was prepared using liquid-assisted grinding method.

View Article and Find Full Text PDF

Various analytical methods and reagents have been employed for nucleic acid analysis in cells, biological fluids, and formulations. Standard techniques like gel electrophoresis and qRT-PCR are widely used for qualitative and quantitative nucleic acid analysis. However, these methods can be time-consuming and labor-intensive, with limitations such as inapplicability to small RNA at low concentrations and high costs associated with qRT-PCR reagents and instruments.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small, non-coding RNAs crucial for gene regulation and implicated in various human diseases. Their potential as clinical prognostic and diagnostic biomarkers in biological fluids necessitates reliable detection methods. In this study, a combination of streptavidin-coupled magnetic beads and capillary electrophoresis with laser-induced fluorescence (CE-LIF) was used to extract and analyze plasma miRNAs.

View Article and Find Full Text PDF

Chronic wound sites have elevated levels of proteolytic enzymes that negate the activity of topically applied growth factors. bFGF encapsulated in gelatin/alginate coacervates was protected from protease and showed better activity than bFGF in solution; however, its activity decreased with particle size and PDI increase after freeze-drying and rehydration. In this study, we aim to improve the stability of bFGF coacervates during freeze-drying to enable a topically applied growth factor delivery system for diabetic foot ulcer.

View Article and Find Full Text PDF

Coacervation is a liquid-liquid phase separation that can occur in solutions of macromolecules through self-assembly or electrostatic interactions. Recently, coacervates composed of biocompatible macromolecules have been actively investigated as nanostructure platforms to encapsulate and deliver biomolecules such as proteins, RNAs, and DNAs. One particular advantage of coacervates is that they are derived from aqueous solutions, unlike other nanoparticle delivery systems that often require organic solvents.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are promising molecules that can regulate gene expression, and their expression level and type have been associated with early diagnosis, targeted therapy, and prognosis of various diseases. Therefore, analysis of miRNA in the plasma or serum is useful for the discovery of biomarkers and the diagnosis of implicated diseases to achieve potentially unprecedented progress in early treatment. Numerous methods to improve sensitivity have recently been proposed and confirmed to be valuable in miRNA detection.

View Article and Find Full Text PDF

Metabolic disorders in diabetic patients are associated with altered protein and lipid metabolism and defects in granulation tissue formation, resulting in non-healing wounds such as diabetic foot ulcers (DFU). Growth factors have essential roles in tissue re-epithelization and angiogenesis during wound healing. In this study, a complex coacervate was evaluated as an enhanced delivery system for fibroblast growth factor (bFGF) to control its release rate and protect it from proteases.

View Article and Find Full Text PDF

Propolis contains a group of compounds with various activities. However, their low solubility is a drawback for the development of pharmaceutical formulations. In this study, poloxamers as a solubilizer and gelling agent were evaluated to develop a topical antimicrobial formulation of propolis.

View Article and Find Full Text PDF

Background: Although quantitative real-time PCR (qRT-PCR) is a common and sensitive method for miRNAs analysis, it is necessary to optimize conditions and minimize qRT-PCR inhibitors to achieve reliable results. The aim of this study was to minimize interference by contaminants in qRT-PCR, maximize product yields for miRNA analyses, and optimize PCR conditions for the reliable screening of miRNAs in plasma.

Methods: The annealing temperature was first optimized by assessing amplification efficiencies.

View Article and Find Full Text PDF

A sensitive and specific capillary electrophoresis with laser-induced fluorescence (CE-LIF) and a simple extraction process was developed to simultaneously detect G3139 and its metabolites as a model of antisense oligonucleotides (ASOs). This method has shown excellent linearity within the tested concentration range for G3139 and its metabolites, with a detection limit of 3.0 pM and a recovery of >84.

View Article and Find Full Text PDF

We aimed to evaluate the effect of crystalline forms of aripiprazole, an antipsychotic drug for schizophrenia, on the dissolution rates and oral pharmacokinetics. Solubility, intrinsic dissolution rates, and tablet dissolution rates of the monohydrate (MA) and the anhydrous form (AA) were measured in various aqueous media while monitoring the phase transformation by ATR-FTIR. And their oral pharmacokinetics in dogs were compared.

View Article and Find Full Text PDF

Emodin exerts anti-inflammatory and anti-cancer effects. However, its poor water solubility limits development into a pharmaceutical product. Although an emodin-nicotinamide cocrystal (ENC) with improved dissolution rate was proposed as a potential candidate, crystallization back to emodin after dissolution diminished the advantage of the cocrystal approach.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are involved in the pathogenesis of many human diseases, and various miRNAs have been reported and developed as therapeutic candidates for treating various diseases. Various miRNA and carrier modification systems have been investigated for effective systemic miRNA delivery to cells, organs, and tissues of interest. Consequently, effective and reliable analytical methods of miRNAs are required for evaluating the pharmacokinetics and biodistribution of miRNAs as therapeutic candidates.

View Article and Find Full Text PDF

Topical imageplication of epidermal growth fctor (EGF) has been used to accelerate diabetic foot ulcers but with limited efficacy. In this study, we selected a complex coacervate (EGF-Coa) composed of the low molecular weight gelatin type A and sodium alginate as a novel delivery system for EGF, based on encapsulation efficiency and protection of EGF from protease. EGF-Coa enhanced in vitro migration of keratinocytes and accelerated wound healing in streptozotocin-induced diabetic mice with increased granulation and re-epithelialization.

View Article and Find Full Text PDF

Diabetic foot ulcers represent one of the major and rising health issues, as the number of diabetic patients is increasing. MicroRNAs (miRNAs) are among various bioactive molecules under investigation for diabetic wound healing. The prolonged pro-inflammatory phase in diabetic wounds partly attributes to its non-healing nature.

View Article and Find Full Text PDF

SMURF2 is a member of the HECT family of E3 ubiquitin ligases that have important roles as a negative regulator of transforming growth factor-β (TGF-β) signaling through ubiquitin-mediated degradation of TGF-β receptor I. However, the regulatory mechanism of SMURF2 is largely unknown. In this study, we identified that micro(mi)R-195 and miR-497 putatively target SMURF2 using several target prediction databases.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are short non-coding RNAs that play important roles in many cellular processes such as development, proliferation, differentiation, and apoptosis. For this reason, miRNAs have been proposed and investigated as biomarkers and therapeutics for various diseases such as cancer, diabetes, and cardiovascular disease. However, delivery of miRNAs and their antagomirs to target sites remains challenging because of poor cellular uptake and degradation by nucleases.

View Article and Find Full Text PDF

Emodin (EM), an anthraquinone obtained from natural products, is known for many pharmacological activities. However, further evaluation and interpretation of toxicity or pharmacological activity of emodin are limited due to its poor aqueous solubility. We aimed to identify an emodin cocrystal with improved pharmaceutical properties.

View Article and Find Full Text PDF

After spinal cord injury (SCI), neutrophil elastase (NE) released at injury site disrupts vascular endothelium integrity and stabilization. Angiopoietins (ANGPTs) are vascular growth factors that play an important role in vascular stabilization. We hypothesized that neutrophil elastase is one of the key determinants of vascular endothelium disruption/destabilization and affects angiopoietins expression after spinal cord injury.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are short noncoding RNA molecules that control the expression of mRNAs associated with various biological processes. Therefore, deregulated miRNAs play important roles in the pathogenesis of diseases. Numerous studies are aimed at discovering biomarkers of diseases or determining miRNA functions by monitoring circulating miRNAs in various biological sources such as plasma and urine.

View Article and Find Full Text PDF

The transforming growth factor-β (TGF-β) signaling pathway is associated with carcinogenesis and various biological processes. SMAD2 and SMAD4, which are putative tumor suppressors, have an important role in TGF-β signaling. The aberrant expression of these genes is implicated in some cancers.

View Article and Find Full Text PDF

Emodin is a component in a Chinese herb, Baill, traditionally used for diabetes and anticancer. Its poor solubility is one of the major challenges to pharmaceutical scientists. We previously reported on thermoreversible gel formulations based on poloxamer for the topical delivery of emodin.

View Article and Find Full Text PDF

The objective of this study was to optimize thermoreversible gel formulations with respect to their gelation temperature and solubilizing capacity, using quality by design (QbD) principles based on design of experiment (DoE). Independent variables, X, X and X represent the weight percentages of poloxamer 407 (P407), poloxamer 188 (P188) and the polyethylene glycol 400, respectively (these polymers are either thermoreversible gelling agents or solubilizers). Emodin, a poorly water-soluble compound, was used as a model drug.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are short RNA molecules that control the expression of mRNAs associated with various biological processes. Therefore, deregulated miRNAs play an important role in the pathogenesis of diseases. Numerous studies aimed at developing novel miRNA-based drugs or determining miRNA functions have been conducted by inhibiting miRNAs using anti-miRNA oligonucleotides (AMOs), which inhibit the function by hybridizing with miRNA.

View Article and Find Full Text PDF

Nanoparticles (NPs) exhibit unique chemical and physical properties that depend on their size, shape, and environment. NPs are emerging as new tools and techniques in the analytical study of various materials and in the biological and biomedical fields, because of their unique properties. Therefore, the quantitative and qualitative characterization of NPs has gathered increasing interest.

View Article and Find Full Text PDF