Theoretical modeling of triboelectric nanogenerators (TENGs) is fundamental to their performance optimization, since it can provide useful guidance on the material selection, structure design, and parameter control of relevant systems. Built on the theoretical model of film-based TENGs, here, an analytical model is introduced for conductor-to-dielectric contact-mode nonwoven-based TENGs, which copes with the unique hierarchical structure of nonwovens and details the correlation between the triboelectric output (maximum transferred charge density) and nonwoven structural parameters (thickness, solidity, and average fiber diameter). A series of styrene-ethylene-butylene-styrene nonwoven samples are fabricated through a melt-blowing process to map nonwoven structural features within certain ranges, while an ion-injection protocol is adopted to quantify the triboelectric output with superior consistency and reproducibility.
View Article and Find Full Text PDFThe use of bulk polymer melt additives provides a facile, industrially relevant approach to tailor properties of polymer surfaces for many different applications. These melt additives, when blended with polymers prior to melt spinning, migrate to the fiber surface and influence surface functionality. While the use of bulk polymer melt additives to impart hydrophilicity or oleophobicity is well studied, the impact of the fiber formation process on additive migration and resultant repellency of nonwoven media products remains largely unexplored.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2018
Here, we describe an electrospun mat of poly(vinyl alcohol) (PVA) and graphene oxide (GO) as a novel solid-state electrolyte matrix, which offers better performance retention upon drying after infiltrated with aqueous electrolyte. The PVA-GO mat overcomes the major issue of conventional PVA-based electrolytes, which is the ionic conductivity decay upon drying. After exposure to 45 ± 5% relative humidity at 25 °C for 1 month, its conductivity decay is limited to 38.
View Article and Find Full Text PDFHere we report a highly conductive polypropylene-graphene nonwoven composite via direct coating of melt blown polypropylene (PP) nonwoven fabrics with graphene oxide (GO) dispersions in N,N-dimethylformamide (DMF), followed by the chemical reduction of GO with hydroiodic acid (HI). GO as an amphiphilic macromolecule can be dispersed in DMF homogeneously at a concentration of 5 mg/mL, which has much lower surface tension (37.5 mN/m) than that of GO in water (72.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2017
Here we describe a nylon-graphene nonwoven (NGN) composite, prepared via melt-blowing of nylon-6 into nonwoven fabrics and infiltrate those with graphene oxide (GO) in aqueous dispersions, which were further chemically reduced into graphene to offer electrical conductivity. The correlation between the conductivity and the graphene loading is described by the percolation scaling law σ = (p - p), with an exponent t of 1.2 and a critical concentration p of 0.
View Article and Find Full Text PDFA simple process for batch or continuous formation of polymer nanofibers and other nanomaterials in the bulk of a sheared fluid medium is introduced. The process may be of high value to commercial nanotechnology, as it can be easily scaled up to the fabrication of staple nanofibers at rates that may exceed tens of kilograms per hour.
View Article and Find Full Text PDFNonwoven materials are found in a gamut of critical applications. This is partly due to the fact that these structures can be produced at high speed and engineered to deliver unique functionality at low cost. The behavior of these materials is highly dependent on alignment of fibers within the structure.
View Article and Find Full Text PDF