Pharmaceuticals (Basel)
October 2024
Maintaining intracellular adenosine triphosphate (ATP) levels is essential for numerous cellular functions, including energy metabolism, muscle contraction, and nerve impulse transmission. ATP is primarily synthesized in mitochondria through oxidative phosphorylation. It is also generated in the cytosol under anaerobic conditions using phosphocreatine (PCr) as a phosphate donor to adenosine diphosphate.
View Article and Find Full Text PDFIn mammalian cells, growth factor-induced intracellular signaling and protein synthesis play a critical role in cellular physiology and homeostasis. In the brain's glymphatic system (GS), the water-conducting activity of aquaporin-4 (AQPN-4) membrane channels (expressed in polarized fashion on astrocyte end-feet) mediates the clearance of wastes through the convective transport of fluid and solutes through the perivascular space. The glycoprotein erythropoietin (EPO) has been shown to induce the astrocyte expression of AQPN-4 via signaling through the EPO receptor and the JAK/STAT signaling pathway.
View Article and Find Full Text PDFThis work investigates the effect of plasmonic gold nanoparticle (AuNP) size on the rate of thermal release of single-stranded oligonucleotides under femtosecond (fs)-pulsed laser irradiation sources. Contrary to the theoretical predictions that larger AuNPs (50-60 nm diameter) would produce the most solution heating and fastest DNA release, it is found that smaller AuNP diameters (25 nm) lead to faster dsDNA denaturation rates. Controlling for the pulse energy fluence, AuNP concentration, DNA loading density, and the distance from the AuNP surface finds the same result.
View Article and Find Full Text PDFEnzyme activity can be many times enhanced in configurations where they are displayed on a nanoparticle (NP) and this same format sometimes even provides access to channeling phenomena within multienzyme cascades. Here, we demonstrate that such enhancement phenomena can be expanded to enzymatic cofactor recycling along with the coupled enzymatic processes that they are associated with. We begin by showing that the efficiency of glucose driven reduction of nicotinamide adenine dinucleotide (NAD → NADH) by glucose dehydrogenase (GDH) is enhanced .
View Article and Find Full Text PDFBackground: Vaccine development is a laborious craftwork in which at least two main components must be defined: a highly immunogenic antigen and a suitable delivery method. Hence, the interplay of these elements could elicit the required immune response to cope with the targeted pathogen with a long-lasting protective capacity.
Objectives: Here we evaluate the properties of Escherichia coli spherical proteoliposomes - known as outer membrane vesicles (OMVs) - as particles with natural adjuvant capacities and as antigen-carrier structures to assemble an innovative prophylactic vaccine for Chagas disease.
Access to efficient enzymatic channeling is desired for improving all manner of designer biocatalysis. We demonstrate that enzymes constituting a multistep cascade can self-assemble with nanoparticle scaffolds into nanoclusters that access substrate channeling and improve catalytic flux by orders of magnitude. Utilizing saccharification and glycolytic enzymes with quantum dots (QDs) as a model system, nanoclustered-cascades incorporating from 4 to 10 enzymatic steps are prototyped.
View Article and Find Full Text PDFIn mammalian cells, plasma membrane potential plays vital roles in both physiology and pathology and it is controlled by a network of membrane-resident ion channels. There is considerable interest in the use of nanoparticles (NPs) to control biological functions, including the modulation of membrane potential. The photoexcitation of gold NPs (AuNPs) tethered close to the plasma membrane has been shown to induce membrane depolarization via localized heating of the AuNP surface coupled with the opening of voltage-gated sodium channels.
View Article and Find Full Text PDFCell-free synthetic biology has emerged as a valuable tool for the development of rapid, portable biosensors that can be readily transported in the freeze-dried form to the point of need eliminating cold chain requirements. One of the challenges associated with cell-free sensors is the ability to simultaneously detect multiple analytes within a single reaction due to the availability of a limited set of fluorescent and colorimetric reporters. To potentially provide multiplexing capabilities to cell-free biosensors, we designed a modular semiconductor quantum dot (QD)-based reporter platform that is plugged in downstream of the transcription-translation functionality in the cell-free reaction and which converts enzymatic activity in the reaction into distinct optical signals.
View Article and Find Full Text PDFNitric oxide (NO), a low molecular weight signaling molecule, plays critical roles in both cellular health and disease. There is continued interest in new modalities for the controlled therapeutic delivery of NO to cells and tissues. The physicochemical properties of NO (including its short half-life and on-demand synthesis at the point of function), however, pose considerable challenges for its specific and efficient delivery.
View Article and Find Full Text PDFNeutralizing antibodies targeting the SARS-CoV-2 spike protein have shown a great preventative/therapeutic potential. Here, we report a rapid and efficient strategy for the development and design of SARS-CoV-2 neutralizing humanized nanobody constructs with sub-nanomolar affinities and nanomolar potencies. CryoEM-based structural analysis of the nanobodies in complex with spike revealed two distinct binding modes.
View Article and Find Full Text PDFDNA nanostructures self-assemble into almost any arbitrary architecture, and when combined with their capability to precisely position and orient dyes, nanoparticles, and biological moieties, the technology reaches its potential. We present a simple yet multifaceted conjugation strategy based on metal coordination by a multi-histidine peptide tag (Histag). The versatility of the Histag as a means to conjugate to DNA nanostructures is shown by using Histags to capture semiconductor quantum dots (QDs) with numerical and positional precision onto a DNA origami breadboard.
View Article and Find Full Text PDFThe elevated intracellular production of or extracellular exposure to reactive oxygen species (ROS) causes oxidative stress to cells, resulting in deleterious irreversible biomolecular reactions (e.g., lipid peroxidation) and disease progression.
View Article and Find Full Text PDFThe development of new technologies for cellular fluorescence microscopy has facilitated high-throughput screening methods for drug discovery. Quantum dots are fluorescent nanoparticles with excellent photophysical properties imbued with bright and stable photoluminescence as well as narrow emission bands. Quantum dots are spherical in shape, and with the proper modification of the surface chemistry, can be used to conjugate biomolecules for cellular applications.
View Article and Find Full Text PDFCell-free protein synthesis systems (CFPS) utilize cellular transcription and translation (TX-TL) machinery to synthesize proteins in vitro. These systems are useful for multiple applications including production of difficult proteins, as high-throughput tools for genetic circuit screening, and as systems for biosensor development. Though rapidly evolving, CFPS suffer from some disadvantages such as limited reaction rates due to longer diffusion times, significant cost per assay when using commercially sourced materials, and reduced reagent stability over prolonged periods.
View Article and Find Full Text PDFThere is significant interest in developing photothermal systems that can precisely control the structure and function of biomolecules through local temperature modulation. One specific application is the denaturation of double-stranded (ds) DNA through femtosecond (fs) laser pulse optical heating of gold nanoparticles (AuNPs); however, the mechanism of DNA melting in these systems is not fully understood. Here, we utilize 55 nm AuNPs with surface-tethered dsDNA, which are locally heated using fs laser pulses to induce DNA melting.
View Article and Find Full Text PDFExpert Opin Drug Discov
March 2022
Introduction: SARS-CoV-2 is a highly infectious and deadly coronavirus whose study requires the use of a biosafety level 3 (BSL-3) containment facility to investigate viral biology and pathogenesis, which limits the study of live virus and slows progress toward finding suitable treatments for infection. While vaccines from several companies have proven very effective in combating the virus, few treatments exist for those who do succumb to the viral-induced systemic disease called COVID-19.
Areas Covered: This short review focuses on fluorescent quantum dot-based modeling of SARS-CoV-2.
Neutralizing antibodies targeting the SARS-CoV-2 spike protein have shown a great preventative/therapeutic potential. Here, we report a rapid and efficient strategy for the development and design of SARS-CoV-2 neutralizing humanized nanobody constructs with sub-nanomolar affinities and nanomolar potencies. CryoEM-based structural analysis of the nanobodies in complex with spike revealed two distinct binding modes.
View Article and Find Full Text PDFEnviron Microbiol
November 2021
Biofilms growing aerobically on conductive substrates are often correlated with a positive, sustained shift in their redox potential. This phenomenon has a beneficial impact on microbial fuel cells by increasing their overall power output but can be detrimental when occurring on stainless steel by enhancing corrosion. The biological mechanism behind this potential shift is unresolved and a metabolic benefit to cells has not been demonstrated.
View Article and Find Full Text PDFDNA nanotechnology has proven to be a powerful strategy for the bottom-up preparation of colloidal nanoparticle (NP) superstructures, enabling the coordination of multiple NPs with orientation and separation approaching nanometer precision. To do this, NPs are often conjugated with chemically modified, single-stranded (ss) DNA that can recognize complementary ssDNA on the DNA nanostructure. The limitation is that many NPs cannot be easily conjugated with ssDNA, and other conjugation strategies are expensive, inefficient, or reduce the specificity and/or precision with which NPs can be placed.
View Article and Find Full Text PDFUnderstanding the SARS-CoV-2 virus' pathways of infection, virus-host-protein interactions, and mechanisms of virus-induced cytopathic effects will greatly aid in the discovery and design of new therapeutics to treat COVID-19. Chloroquine and hydroxychloroquine, extensively explored as clinical agents for COVID-19, have multiple cellular effects including alkalizing lysosomes and blocking autophagy as well as exhibiting dose-limiting toxicities in patients. Therefore, we evaluated additional lysosomotropic compounds to identify an alternative lysosome-based drug repurposing opportunity.
View Article and Find Full Text PDFColloidal semiconductor quantum dots (QDs), metal nanoparticles, and cellulose paper are materials with numerous applications in bioanalysis and beyond. The functional properties of QDs and metal NPs are substantially different than those of cellulose, such that their integration with cellulose paper is potentially enabling for many applications. Here, we characterize and evaluate multiple chemistries that modify cellulose paper substrates for the affinity-based immobilization of QDs, gold nanoparticles (Au NPs), and platinum nanoparticles (Pt NPs).
View Article and Find Full Text PDFThe first step of SARS-CoV-2 infection is binding of the spike protein's receptor binding domain to the host cell's ACE2 receptor on the plasma membrane. Here, we have generated a versatile imaging probe using recombinant Spike receptor binding domain conjugated to fluorescent quantum dots (QDs). This probe is capable of engaging in energy transfer quenching with ACE2-conjugated gold nanoparticles to enable monitoring of the binding event in solution.
View Article and Find Full Text PDFFemtosecond (fs) laser pulsed excitation of plasmonic nanoparticle (NP)-biomolecule conjugates is a promising method to locally heat biological materials. Studies have demonstrated that fs pulses of light can modulate the activity of DNA or proteins when attached to plasmonic NPs; however, the precision over subsequent biological function remains largely undetermined. Specifically, the temperature the localized biomolecules "experience" remains unknown.
View Article and Find Full Text PDFDespite the progress in nanotechnology for biomedical applications, great efforts are still being employed in optimizing nanoparticle (NP) design parameters to improve functionality and minimize bionanotoxicity. In this study, we developed CdSe/CdS/ZnS core/shell/shell quantum dots (QDs) that are compact ligand-coated and surface-functionalized with an HIV-1-derived TAT cell-penetrating peptide (CPP) analog to improve both biocompatibility and cellular uptake. Multiparametric studies were performed in different mammalian and murine cell lines to compare the effects of varying QD size and number of surface CPPs on cellular uptake, viability, generation of reactive oxygen species, mitochondrial health, cell area, and autophagy.
View Article and Find Full Text PDFWe report a Förster resonance energy transfer (FRET)-based imaging ensemble for the visualization of membrane potential in living cells. A water-soluble poly(fluorene-cophenylene) conjugated polyelectrolyte (FsPFc10) serves as a FRET donor to a voltage-sensitive dye acceptor (FluoVolt ). We observe FRET between FsPFc10 and FluoVolt , where the enhancement in FRET-sensitized emission from FluoVolt is measured at various donor/acceptor ratios.
View Article and Find Full Text PDF