Publications by authors named "Eunhye Cho"

Objective: Pelvic inflammatory disease (PID) is an infection of female reproductive organs mainly in sexually active patients, which can cause serious complications throughout life. We aimed to analyze the risk factors and differences in sexually transmitted infections (STIs) between adolescents and adult PID patients.

Materials And Methods: We conducted a retrospective study based on descriptive and statistical analyses of the clinical records of patients with PID treated with antibiotics between January 2013 and December 2023 at Busan Paik Hospital.

View Article and Find Full Text PDF

The facet-dependent surface chemistry of nanocrystals (NCs) provides fundamental insights into chemical reactivities, which are critical for obtaining precise control over the NC surface. In this study, by obtaining InP NCs with well-defined {111} and {110}/{-1-1-1} facets (tetrahedrons and tetrapods, respectively) capped with chloride-oleylamine ligands, the previously underinvestigated facet-dependent surface chemistry of III-V materials is explored. Solid-state and solution NMR analyses show that InP tetrahedrons, with their smaller surface heterogeneity (single facet composition and lesser edge/vertex contribution) and stronger Lewis acidity, exhibit narrow P and In resonances as well as deshielded C signals of α-carbon adjacent to the NH group of oleylamine.

View Article and Find Full Text PDF

Focal cortical dysplasia type I (FCD I) is the most common cause of pharmaco-resistant epilepsy with the poorest prognosis. To understand the epileptogenic mechanisms of FCD I, we obtained tissue resected from patients with FCD I epilepsy, and from tumor patients as control. Using whole-cell patch clamp in acute human brain slices, we investigated the cellular properties of fast-spiking interneurons (FSINs) and pyramidal neurons (PNs) within the ictal onset zone.

View Article and Find Full Text PDF

While the shape-dependent quantum confinement (QC) effect in anisotropic semiconductor nanocrystals has been extensively studied, the QC in facet-specified polyhedral quantum dots (QDs) remains underexplored. Recently, tetrahedral nanocrystals have gained prominence in III-V nanocrystal synthesis. In our study, we successfully synthesized well-faceted tetrahedral InAs QDs with a first excitonic absorption extending up to 1700 nm.

View Article and Find Full Text PDF

Colloidal quantum dots (CQDs) have garnered significant attention in nanoscience and technology, with a particular emphasis on achieving high monodispersity in their synthesis. Recent advances in understanding the chemistry of reaction intermediates such as magic-sized nanoclusters (MSC) have paved the way for innovative synthetic strategies. Notably, monodisperse CQDs of various compositions, including indium phosphide, indium arsenide, and cadmium chalcogenide, have been successfully prepared using nanocluster intermediates as single-source precursors.

View Article and Find Full Text PDF

Background: As the population ages and the prevalence of dementia increases, there is a growing emphasis on the importance of cognitive training to prevent dementia. A smartphone application-based cognitive training software program, BeauBrain Trainer (BBT), has been developed to provide better access to cognitive training for older adults. Numerous studies have revealed the effectiveness of cognitive training using a cognitive assessment tool.

View Article and Find Full Text PDF

Prohibitin 1 (Phb1) is a pleiotropic protein, located mainly in the mitochondrial inner membrane and involved in the regulation of cell proliferation and the stabilization of mitochondrial protein. Acetaminophen (APAP) is one of the most commonly used over-the-counter analgesics worldwide. However, at high dose, the accumulation of N-acetyl-p-benzoquinone imine (NAPQI) can lead to APAP-induced hepatotoxicity.

View Article and Find Full Text PDF

The dual leucine zipper kinase (DLK) is a key regulator of axon regeneration and degeneration in response to neuronal injury; however, regulatory mechanisms of the DLK function via its interacting proteins are largely unknown. To better understand the molecular mechanism of DLK function, we performed yeast two-hybrid screening analysis and identified FK506-binding protein-like (FKBPL, also known as WAF-1/CIP1 stabilizing protein 39) as a DLK-binding protein. FKBPL binds to the kinase domain of DLK and inhibits its kinase activity.

View Article and Find Full Text PDF

Despite the technological importance of colloidal covalent III-V nanocrystals with unique optoelectronic properties, their synthetic process still has challenges originating from the complex energy landscape of the reaction. Here, we present InP tetrapod nanocrystals as a crystalline late intermediate in the synthetic pathway that warrants controlled growth. We isolate tetrapod intermediate species with well-defined surfaces of (110) and ([Formula: see text]) via the suppression of further growth.

View Article and Find Full Text PDF

Neurons are vulnerable to injury, and failure to activate self-protective systems after injury leads to neuronal death. However, sensory neurons in dorsal root ganglions (DRGs) mostly survive and regenerate their axons. To understand the mechanisms of the neuronal injury response, we analyzed the injury-responsive transcriptome and found that Stc2 is immediately upregulated after axotomy.

View Article and Find Full Text PDF

Objective: Cerebral hemodynamic and metabolic changes may occur during the rewarming phase of targeted temperature management in post cardiac arrest patients. Yet, studies on different rewarming rates and patient outcomes are limited. This study aimed to investigate post cardiac arrest patients who were rewarmed with different rewarming rates after 24 hours of hypothermia and the association of these rates to the neurologic outcomes.

View Article and Find Full Text PDF

Recent evidence has shown that endothelial colony forming cells (ECFCs) may serve as a cell therapy for improving blood vessel formation in subjects with vascular injury, largely due to their robust vasculogenic potential. The Rho family GTPase Cdc42 is known to play a primary role in this vasculogenesis process, but little is known about how extracellular matrix (ECM) rigidity affects Cdc42 activity during the process. In this study, we addressed two questions: Does matrix rigidity affect Cdc42 activity in ECFC undergoing early vacuole formation? How is the spatiotemporal activation of Cdc42 related to ECFC vacuole formation? A fluorescence resonance energy transfer (FRET)-based Cdc42 biosensor was used to examine the effects of the rigidity of three-dimensional (3D) collagen matrices on spatiotemporal activity of Cdc42 in ECFCs.

View Article and Find Full Text PDF

Bone is a dynamic tissue under constant remodeling in response to various signals including mechanical loading. A lack of proper mechanical loading induces disuse osteoporosis that reduces bone mass and structural integrity. The β-catenin signaling together with a network of GTPases is known to play a primary role in load-driven bone formation, but little is known about potential interactions of β-catenin signaling and GTPases in bone loss.

View Article and Find Full Text PDF

Beta-catenin-dependent TCF/LEF (T-cell factor/lymphocyte enhancing factor) is known to be mechanosensitive and an important regulator for promoting bone formation. However, the functional connection between TCF/LEF activity and Rho family GTPases is not well understood in osteoblasts. Herein we investigated the molecular mechanisms underlying oscillatory shear stress-induced TCF/LEF activity in MC3T3-E1 osteoblast cells using live cell imaging.

View Article and Find Full Text PDF

Osteoblasts play a pivotal role in load-driven bone formation by activating Wnt signaling through a signal from osteocytes as a mechanosensor. Osteoblasts are also sensitive to mechanical stimulation, but the role of RhoA, a small GTPase involved in the regulation of cytoskeleton adhesion complexes, in mechanotransduction of osteoblasts is not completely understood. Using MC3T3-E1 osteoblast-like cells under 1 hr flow treatment at 10 dyn/cm(2), we examined a hypothesis that RhoA signaling mediates the cellular responses to flow-induced shear stress.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionah0savffqgjpmr0cq2oneog37gc864p0): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once