Publications by authors named "Eunho Jang"

Organic matter is crucial in aerosol-climate interactions, yet the physicochemical properties and origins of organic aerosols remain poorly understood. Here we show the seasonal characteristics of submicron organic aerosols in Arctic Svalbard during spring and summer, emphasizing their connection to transport patterns and particle size distribution. Microbial-derived organic matter (MOM) and terrestrial-derived organic matter (TOM) accounted for over 90% of the total organic mass in Arctic aerosols during these seasons, comprising carbohydrate/protein-like and lignin/tannin-like compounds, respectively.

View Article and Find Full Text PDF

Marine organic aerosols play crucial roles in global climatic systems. However, their chemical properties and relationships with various potential organic sources still need clarification. This study employed high-resolution mass spectrometry to investigate the identity, origin, and transportation of organic aerosols in pristine Antarctic environments (King Sejong Station; 62.

View Article and Find Full Text PDF

Sea spray aerosol (SSA) particles strongly influence clouds and climate but the potential impact of ocean microbiota on SSA fluxes is still a matter of active research. Here-by means of in situ ship-borne measurements-we explore simultaneously molecular-level chemical properties of organic matter (OM) in oceans, sea ice, and the ambient PM aerosols along a transect of 15,000 km from the western Pacific Ocean (36°13'N) to the Southern Ocean (75°15'S). By means of orbitrap mass spectrometry and optical characteristics, lignin-like material (24 ± 5 %) and humic material (57 ± 8 %) were found to dominate the pelagic Pacific Ocean surface, while intermediate conditions were observed in the Pacific-Southern Ocean waters.

View Article and Find Full Text PDF

Dimethyl sulfide (DMS) produced by marine algae represents the largest natural emission of sulfur to the atmosphere. The oxidation of DMS is a key process affecting new particle formation that contributes to the radiative forcing of the Earth. In this study, atmospheric DMS and its major oxidation products (methanesulfonic acid, MSA; non-sea-salt sulfate, nss-SO) and particle size distributions were measured at King Sejong station located in the Antarctic Peninsula during the austral spring-summer period in 2018-2020.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessioneup2vfof16jpcpukkot000b5i8pf0qrs): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once