This study examined the obligate aerobe, Pseudomonas putida, using acetate as the sole carbon and energy source, and respiration via an anode as the terminal electron acceptor under anoxic conditions. P. putida showed significantly different acetate assimilation in a closed-circuit microbial fuel cell (CC-MFC) compared to an open circuit MFC (OC-MFC).
View Article and Find Full Text PDFThe microbial electrosynthesis is a platform to supply protons and electrons to improve the conversion efficiency and production rate for the valorization of C1 gas. This study examined proton migration and electron transfer of the electrode and microbe by using various external parameters in the electrosynthesis of CO. The CO electrosynthesis achieved almost double of coulombic efficiency than the conventional CO electrosynthesis.
View Article and Find Full Text PDF1,3-Propanediol (1,3-PDO) is an important platform chemical which has a wide application in food, cosmetics, pharmaceutical and textile industries. Its biological production using recombinant Escherichia coli with glucose as carbon source has been commercialized by DuPont, but E. coli cannot synthesize coenzyme B which is an essential and expensive cofactor of glycerol dehydratase, a core enzyme in 1,3-PDO biosynthesis.
View Article and Find Full Text PDF3-Hydroxypropionic acid (3-HP) is an important platform chemical, but its toxic effect at high concentrations (> 200 mM) is a serious challenge for commercial production. In this study, a highly 3-HP-tolerant strain of Escherichia coli W (tolerance concentration: 400 mM in M9 minimal medium and 800 mM when yeast extract was added) was developed by adaptive laboratory evolution (ALE) with glycerol as the carbon source. Genome analysis of the adapted strain (designated as E.
View Article and Find Full Text PDFProduction of 3-hydroxypropionic acid (3-HP) or 1,3-propanediol (1,3-PDO) production from glycerol is challenging due to the problems associated with cofactor regeneration, coenzyme B synthesis, and the instability of pathway enzymes. To address these complications, simultaneous production of 3-HP and 1,3-PDO, instead of individual production of each compound, was attempted. With over-expression of an aldehyde dehydrogenase, recombinant Klebsiella pneumoniae could co-produce 3-HP and 1,3-PDO successfully.
View Article and Find Full Text PDFBiological 3-hydroxypropionic acid (3-HP) production from glycerol is a two-step reaction catalyzed by glycerol dehydratase (GDHt) and aldehyde dehydrogenase (ALDH). Recombinant strains developed for 3-HP production often suffer from the accumulation of a toxic intermediate, 3-hydroxypropionaldehyde (3-HPA). In order to avoid 3-HPA accumulation, balancing of the two enzymatic activities, in the present study, was attempted by employment of synthetic-regulatory cassettes comprising varying-strength promoters and bicistronic ribosome-binding sites (RBSs).
View Article and Find Full Text PDFBioresour Technol
December 2017
The production of 1,3-propanediol (1,3-PDO) from glucose was investigated using Klebsiella pneumoniae J2B, which converts glycerol to 1,3-PDO and synthesize an essential coenzyme B. In order to connect the glycolytic pathway with the pathway of 1,3-PDO synthesis from glycerol, i.e.
View Article and Find Full Text PDFBackground: Biologically, hydrogen (H) can be produced through dark fermentation and photofermentation. Dark fermentation is fast in rate and simple in reactor design, but H production yield is unsatisfactorily low as <4 mol H/mol glucose. To address this challenge, simultaneous production of H and ethanol has been suggested.
View Article and Find Full Text PDFBackground: Y19 is a good biocatalyst for production of hydrogen (H) from oxidation of carbon monoxide (CO) via the so-called water-gas-shift reaction (WGSR). It has a high H-production activity (23.83 mmol H g cell h) from CO, and can grow well to a high density on various sugars.
View Article and Find Full Text PDFGlycerol dehydratase (GDHt), which converts glycerol to 3-hydroxypropionaldehyde, is essential to the production of 1,3-propanediol (1,3-PDO) or 3-hydroxypropionic acid (3-HP). A reliable GDHt activity assay in crude-cell extract was developed. In the assay, GDHt converted 1,2-propanediol (1,2-PDO) to propionaldehyde, which was further converted to 1-propionic acid by aldehyde dehydrogenase (KGSADH) or to 1-propanol by yeast-alcohol dehydrogenase (yADH), while the NADH concentration change was monitored spectrophotometrically.
View Article and Find Full Text PDFBackground: Fermentative hydrogen (H2) production suffers from low carbon-to-H2 yield, to which problem, co-production of ethanol and H2 has been proposed as a solution. For improved co-production of H2 and ethanol, we developed Escherichia coli BW25113 ΔhycA ΔhyaAB ΔhybBC ΔldhA ΔfrdAB Δpta-ackA ΔpfkA (SH8*) and overexpressed Zwf and Gnd, the key enzymes in the pentose-phosphate (PP) pathway (SH8*_ZG). However, the amount of accumulated pyruvate, which was significant (typically 0.
View Article and Find Full Text PDFHydrogen (H2) production from glucose by dark fermentation suffers from the low yield. As a solution to this problem, co-production of H2 and ethanol, both of which are good biofuels, has been suggested. To this end, using Escherichia coli, activation of pentose phosphate (PP) pathway, which can generate more NADPH than the Embden-Meyhof-Parnas (EMP) pathway, was attempted.
View Article and Find Full Text PDFBackground: 3-Hydroxypropionic acid (3-HP) is an important platform chemical that boasts a variety of industrial applications. Gene expression systems inducible by 3-HP, if available, are of great utility for optimization of the pathways of 3-HP production and excretion.
Results: Here we report the presence of unique inducible gene expression systems in Pseudomonas denitrificans and other microorganisms.
We report here the complete genome sequence of Citrobacter amalonaticus Y19 isolated from an anaerobic digester. PacBio single-molecule real-time (SMRT) sequencing was employed, resulting in a single scaffold of 5.58Mb.
View Article and Find Full Text PDFFor the newly isolated H2-producing chemoheterotrophic bacterium Citrobacter amalonaticus Y19, anaerobic glucose metabolism was studied in batch cultivation at varying initial glucose concentrations (3.5- 9.5 g/l).
View Article and Find Full Text PDF