The human growth hormone (hGH) gene is controlled by a long-range enhancer, HSI, located 14.5 kb 5' to the hGH promoter. HSI establishes a domain of noncoding transcription that is 'looped' to the hGH promoter as an essential step in initiating hGH gene expression.
View Article and Find Full Text PDFThe human B cell-specific protein, CD79b (also known as Igβ and B29) constitutes an essential signal transduction component of the B cell receptor. Although its function is central to the triggering of B cell terminal differentiation in response to antigen stimulation, the transcriptional determinants that control CD79b gene expression remain poorly defined. In the present study, we explored these determinants using a series of hCD79b transgenic mouse models.
View Article and Find Full Text PDFThe detection of noncoding transcription at multiple enhancers within the mammalian genome raises critical questions regarding whether and how this activity contributes to enhancer function. Here, using in vivo analysis of a human growth hormone (hGH) transgene locus, we report that activation of a domain of noncoding transcription adjacent to the long-range hGH-N enhancer, HSI, is established by the enhancer independent of any interactions with its target promoter. We further demonstrate that the appearance of this enhancer-linked noncoding transcription is temporally and spatially concordant with induction of hGH-N in the embryonic pituitary.
View Article and Find Full Text PDFRandom assortment within mammalian genomes juxtaposes genes with distinct expression profiles. This organization, along with the prevalence of long-range regulatory controls, generates a potential for aberrant transcriptional interactions. The human CD79b/GH locus contains six tightly linked genes with three mutually exclusive tissue specificities and interdigitated control elements.
View Article and Find Full Text PDFSpecific cell type differentiation is driven by programmed regulation of gene expression, which is the result of coordinated modulation of the transcription machinery and chromatin-remodeling factors. We present evidence here that the down-regulation of histone deacetylases is an important process during adipocyte differentiation. In 3T3-L1 cells, histone hyperacetylation was selectively induced at the promoter regions of adipogenic genes during adipocyte differentiation.
View Article and Find Full Text PDFCentromeres of fission yeast are arranged with a central core DNA sequence flanked by repeated sequences. The centromere-associated histone H3 variant Cnp1 (SpCENP-A) binds exclusively to central core DNA, while the heterochromatin proteins and cohesins bind the surrounding outer repeats. CHD (chromo-helicase/ATPase DNA binding) chromatin remodeling factors were recently shown to affect chromatin assembly in vitro.
View Article and Find Full Text PDFAdipocyte determination- and differentiation-dependent factor 1 (ADD1) plays important roles in lipid metabolism and insulin-dependent gene expression. Because insulin stimulates carbohydrate and lipid synthesis, it would be important to decipher how the transcriptional activity of ADD1/SREBP1c is regulated in the insulin signaling pathway. In this study, we demonstrated that glycogen synthase kinase (GSK)-3 negatively regulates the transcriptional activity of ADD1/SREBP1c.
View Article and Find Full Text PDFRandom assortment of genes within mammalian genomes establishes the potential for interference between neighboring genes with distinct transcriptional specificities. Long-range transcriptional controls further increase this potential. Exploring this problem is of fundamental importance to understanding gene regulation.
View Article and Find Full Text PDFLiver X receptors (LXRs) are nuclear hormone receptors that regulate cholesterol and fatty acid metabolism in liver tissue and in macrophages. Although LXR activation enhances lipogenesis, it is not well understood whether LXRs are involved in adipocyte differentiation. Here, we show that LXR activation stimulated the execution of adipogenesis, as determined by lipid droplet accumulation and adipocyte-specific gene expression in vivo and in vitro.
View Article and Find Full Text PDFAdiponectin is exclusively expressed in differentiated adipocytes and plays an important role in regulating energy homeostasis, including the glucose and lipid metabolism associated with increased insulin sensitivity. However, the control of adiponectin gene expression in adipocytes is poorly understood. We show here that levels of adiponectin mRNA and protein are reduced in the white adipose tissue of ob/ob and db/db mice and that there is a concomitant reduction of the adipocyte determination- and differentiation-dependent factor 1 (ADD1)/sterol regulatory element-binding protein 1c (SREBP1c) transcription factor.
View Article and Find Full Text PDFAdipocyte determination and differentiation dependent factor 1 (ADD1)/sterol regulatory element binding protein isoform (SREBP1c) is a key transcription factor in fatty acid metabolism and insulin- dependent gene expression. Although its transcriptional and post-translational regulation has been extensively studied, its regulation by interacting proteins is not well understood. To identify cellular proteins that associate with ADD1/SREBP1c, we employed the yeast two-hybrid system with an adipocyte cDNA library.
View Article and Find Full Text PDFRecent studies with murine models propose that resistin would be a possible mediator to link between obesity and insulin resistance. Although it has been reported that resistin is highly expressed and secreted by adipocytes, transcription factors that are involved in resistin gene expression have not been well characterized. To investigate the molecular mechanisms of resistin gene expression, we cloned and characterized the human resistin promoter.
View Article and Find Full Text PDFHrp3, a paralog of Hrp1, is a novel member of the CHD1 (chromo-helicase/ATPase-DNA binding 1) protein family of Schizosaccharomyces pombe. Although it has been considered that CHD1 proteins are required for chromatin modifications in transcriptional regulations, little is known about their roles in vivo. In this study, we examined the effects of Hrp3 on heterochromatin silencing using several S.
View Article and Find Full Text PDFEndocrine disrupters refer to environmental or chemical compounds, which interfere with the endocrine system of organisms. In this study, our aim was to develop a screening method to detect xenoestrogen (an endocrine disrupter that is commonly encountered in our daily life) by using fission yeast Schizosaccharomyces pombe. Although the yeast (the simplest eukaryotic cell) has no endocrine system, estrogen receptors that are created to express in the yeast cell can be activated by estrogen in a similar manner to mammalian cells.
View Article and Find Full Text PDF