Publications by authors named "Eunah Lee"

In the field of optical imaging, the ability to image tumors at depth with high selectivity and specificity remains a challenge. Surface enhanced resonance Raman scattering (SERRS) nanoparticles (NPs) can be employed as image contrast agents to specifically target cells in vivo; however, this technique typically requires time-intensive point-by-point acquisition of Raman spectra. Here, we combine the use of "spatially offset Raman spectroscopy" (SORS) with that of SERRS in a technique known as "surface enhanced spatially offset resonance Raman spectroscopy" (SESORRS) to image deep-seated tumors in vivo.

View Article and Find Full Text PDF

Vascular dysfunction resulting from endothelial hyperpermeability is a common and important feature of critical illness due to sepsis, trauma, and other conditions associated with acute systemic inflammation. Clarkson disease [monoclonal gammopathy-associated idiopathic systemic capillary leak syndrome (ISCLS)] is a rare, orphan disorder marked by spontaneous and recurrent episodes of hypotensive shock and peripheral edema due to widespread vascular leakage in peripheral tissues. Mortality from acute flares approaches 30% due to lack of effective therapies.

View Article and Find Full Text PDF

For functional reconstruction of fibrocartilage, it is necessary to reproduce the essential mechanical property exhibited by natural fibrocartilage. The distinctive mechanical property of fibrocartilage is originated from the specific histological features of fibrocartilage composed of highly aligned type I collagen (Col I) and an abundant cartilaginous matrix. While the application of tensile stimulation induces highly aligned Col I, our study reveals that it also exerts an antichondrogenic effect on scaffold-free tissues constructed with meniscal chondrocytes (MCs) and induces downregulation of Sox-9 expression and attenuated glycosaminoglycan production.

View Article and Find Full Text PDF

Tumor progression is intimately associated with the vasculature, as tumor proliferation induces angiogenesis and tumor cells metastasize to distant organs via blood vessels. However, whether tumor invasion is associated with blood vessels remains unknown. As glioblastoma (GBM) is featured by aggressive invasion and vascular abnormalities, we characterized the onset of vascular remodeling in the diffuse tumor infiltrating zone by establishing new spontaneous GBM models with robust invasion capacity.

View Article and Find Full Text PDF

Cadmium (Cd) accumulates in the body through contaminated foods or water and causes pathological damage to the liver via oxidative stress and inflammatory reactions. This study was conducted to explore the effects of dendropanoxide (DPx) on Cd-induced hepatotoxicity in rats. Sprague-Dawley (SD) rats were injected with CdCl2 (7 mg/kg body weight) intraperitoneally for 14 days for the induction of liver dysfunction.

View Article and Find Full Text PDF

Fourier transform infrared (FTIR) and Raman microspectroscopy are methods applied in microplastics research to determine the chemical identity of microplastics. These techniques enable quantification of microplastic particles across various matrices. Previous work has highlighted the benefits and limitations of each method and found these to be complimentary.

View Article and Find Full Text PDF

Microscopy is often the first step in microplastic analysis and is generally followed by spectroscopy to confirm material type. The value of microscopy lies in its ability to provide count, size, color, and morphological information to inform toxicity and source apportionment. To assess the accuracy and precision of microscopy, we conducted a method evaluation study.

View Article and Find Full Text PDF

This study reports the preparation of a polybutylene succinate (PBS) film reinforced with pure cellulose nanofibril (PCNF) and lignocellulose nanofibril (LCNF) by a two-step process that consists of solvent dispersion and twin-screw extrusion. Compared to the conventional one-step process, this method offered improved mechanical properties. The addition of 5% CNF increased the tensile properties up to 18.

View Article and Find Full Text PDF

Background: Intravenous propacetamol is commonly used to control fever and pain in neurocritically ill patients in whom oral administration is often difficult. However, several studies reported that intravenous propacetamol may cause blood pressure drop. Thus, we aimed to investigate the occurrence and risk factors for intravenous propacetamol-induced blood pressure drop in neurocritically ill patients.

View Article and Find Full Text PDF
Article Synopsis
  • A cellulose acetate (CA)/cellulose nanofibril (CNF) film was created using a solvent casting method, where CNF serves as a reinforcement to enhance the film's tensile strength.
  • The study tested different ratios of CNF (3, 5, and 10 parts per hundred) and experimented with eco-friendly plasticizers (triacetin and triethyl citrate) along with two solvents (acetone and NMP).
  • Results indicated that using NMP for dispersion improved the film's mechanical properties significantly, with up to a 38% increase in tensile strength and a 65% increase in elastic modulus compared to pure CA, especially with a maximum effective CNF loading of 5 phr.
View Article and Find Full Text PDF

Lignocellulose nanofibrils (LCNFs) with different lignin contents were prepared using choline chloride (ChCl)/lactic acid (LA), deep eutectic solvent (DES) pretreatment, and subsequent mechanical defibrillation. The LCNFs had a diameter of 15.3-18.

View Article and Find Full Text PDF

Literature in the field of stem cell therapy indicates that, when stem cells in a state of single-cell suspension are injected systemically, they show poor in vivo survival, while such cells show robust cell survival and regeneration activity when transplanted in the state of being attached on a biomaterial surface. Although an attachment-deprived state induces anoikis, when cell-surface engineering technology was adopted for stem cells in a single-cell suspension state, cell survival and regenerative activity dramatically improved. The biochemical signal coming from ECM (extracellular matrix) molecules activates the cell survival signal transduction pathway and prevents anoikis.

View Article and Find Full Text PDF

In this study, the effect of lignin esterification with fatty acid chloride on the properties of lignin and lignin/poly(lactic acid) (PLA) composites was investigated. Lignocellulose ( S. et Z.

View Article and Find Full Text PDF

We aimed to improve the mechanical properties of alginate fibers by reinforcing with various cellulose nanofibrils (CNFs). Pure cellulose nanofibril (PCNF), lignocellulose nanofibril (LCNF) obtained via deep eutectic solvent (DES) pretreatment, and TEMPO-oxidized lignocellulose nanofibril (TOLCNF) were employed. Sodium alginate (AL) was mixed with PCNF, LCNF, and TOLCNF with a CNF content of 5-30%.

View Article and Find Full Text PDF

Near the bone remodeling compartments (BRC), extracellular calcium concentration (Ca) is locally elevated and bone marrow stromal cells (BMSCs) close to the BRC can be exposed to high calcium concentration. The calcium-sensing receptor (CaSR) is known to play a key role in maintaining extracellular calcium homeostasis by sensing fluctuations in the levels of extracellular calcium (Ca). When human BMSCs (hBMSCs) were exposed to various calcium concentrations (1.

View Article and Find Full Text PDF

Objective: Meniscus tissue is composed of highly aligned type I collagen embedded with cartilaginous matrix. This histological feature endows mechanical properties, such as tensile strength along the direction of the collagen alignment and endurance to compressive load induced by weight bearing. The main objective of this study was to compare the fibrocartilage construction capability of different cell sources in the presence of mechanical stimuli.

View Article and Find Full Text PDF

Microplastic research is a rapidly developing field, with urgent needs for high throughput and automated analysis techniques. We conducted a review covering image analysis from optical microscopy, scanning electron microscopy, fluorescence microscopy, and spectral analysis from Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, pyrolysis gas-chromatography mass-spectrometry, and energy dispersive X-ray spectroscopy. These techniques were commonly used to collect, process, and interpret data from microplastic samples.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on creating wet-spun filaments using different types of nanofibrils: lignocellulose nanofibril (LCNF), holocellulose nanofibril (HCNF), and nearly purified-cellulose nanofibril (NP-CNF).
  • It was found that the diameter of the filaments increased in this order: NP-CNF ≤ HCNF < LCNF, and removing lignin enhanced defibrillation efficiency and overall filament properties.
  • Orientation of the cellulose nanofibrils (CNFs) improved the tensile strength and elastic modulus of the filaments, with tensile strength ranking from highest to lowest as HCNF > NP-CNF > LCNF.
View Article and Find Full Text PDF

Background: Because articular chondrocyte-based autologous chondrocyte implantations (ACIs) have restrictively restored articular cartilage defects, alternative cell sources as a new therapeutic option for cartilage repair have been introduced.

Purpose: To assess whether implantation of a costal chondrocyte-derived pellet-type (CCP) ACI allows safe, functional, and structural restoration of full-thickness cartilage defects in the knee.

Study Design: Case series; Level of evidence, 4.

View Article and Find Full Text PDF

Kraft lignin (KL) or plasticized KL (PKL)/poly(lactic acid) (PLA) composites, containing different lignin contents and with and without the coupling agent, were prepared in this study using twin-screw extrusion at 180 °C. Furthermore, ε-caprolactone and polymeric diphenylmethane diisocyanate (pMDI) were used as a plasticizer of KL and a coupling agent to improve interfacial adhesion, respectively. It was found that lignin plasticization improved lignin dispersibility in the PLA matrix and increased the melt flow index due to decrease in melt viscosity.

View Article and Find Full Text PDF
Article Synopsis
  • Poly(butylene succinate) (PBS) composites mixed with wood flour (WF) were created through twin-screw extrusion, showing varying effects on tensile strength based on the inclusion of polymeric diphenylmethane diisocyanate (pMDI).
  • As the WF content increased, tensile strength decreased for composites without pMDI, but increased for those with pMDI, while kraft lignin (KL) negatively impacted tensile properties in both cases.
  • The melt flow index (MFI) dropped with higher WF content but rose with more KL; pMDI increased melt viscosity, leading to lower MFI, and the composites exhibited reduced thermal stability compared to neat PBS, with changes in crystallization rates
View Article and Find Full Text PDF

Microcarrier-based stem cell expansion cultures can increase the dimensions of in vitro stem cell cultures from 2D to 3D. The culture handling process then becomes more efficient compared with conventional 2D cultures. However, the use of spherical plastic microcarriers complicates the monitoring of cell culture.

View Article and Find Full Text PDF

Background: Current dilemma working with surgically-induced OA (osteoarthritis) model include inconsistent pathological state due to various influence from surrounding tissues. On the contrary, biochemical induction of OA using collagenase II has several advantageous points in a sense that it does not involve surgery to induce model and the extent of induced cartilage degeneration is almost uniform. However, concerns still exists because biochemical OA model induce abrupt destruction of cartilage tissues through enzymatic digestion in a short period of time, and this might accompany systemic inflammatory response, which is rather a trait of RA (rheumatoid arthritis) than being a trait of OA.

View Article and Find Full Text PDF

Human brain mapping of low-frequency electrical conductivity tensors can realize patient-specific volume conductor models for neuroimaging and electrical stimulation. We report experimental validation and in vivo human experiments of a new electrodeless conductivity tensor imaging (CTI) method. From CTI imaging of a giant vesicle suspension using a 9.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiont065o485j8vkgupkf4c97aoseamrqsog): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once