Publications by authors named "Euna Yoo"

Ubiquitin-specific protease 18 (USP18) is a multifunctional cysteine protease primarily responsible for deconjugating interferon-inducible ubiquitin-like (Ubl) modifier ISG15 from protein substrates. Here, we report the design and synthesis of activity-based probes (ABPs) capable of selectively detecting USP18 activity over other ISG15 cross-reactive deubiquitinases (DUBs) by incorporating unnatural amino acids into the C-terminal tail of ISG15. Combining with a ubiquitin-based DUB ABP, the selective USP18 ABP is employed in a chemoproteomic screening platform to identify and assess inhibitors of DUBs including USP18.

View Article and Find Full Text PDF

Electrophilic small molecules with novel reactivity are powerful tools that enable activity-based protein profiling and covalent inhibitor discovery. Here, we report a reactive heterocyclic scaffold, 4-chloro-pyrazolopyridine (CPzP) for selective modification of proteins via a nucleophilic aromatic substitution (SAr) mechanism. Chemoproteomic profiling reveals that CPzPs engage cysteines within functionally diverse protein sites including ribosomal protein S5 (RPS5), inosine monophosphate dehydrogenase 2 (IMPDH2), and heat shock protein 60 (HSP60).

View Article and Find Full Text PDF

The last two decades have witnessed a major revolution in the field of tumor immunology including clinical progress using various immunotherapy strategies. These advances have highlighted the potential for approaches that harness the power of the immune system to fight against cancer. While cancer immunotherapies have shown significant clinical successes, patient responses vary widely due to the complex and heterogeneous nature of tumors and immune responses, calling for reliable biomarkers and therapeutic strategies to maximize the benefits of immunotherapy.

View Article and Find Full Text PDF

The proteasome is a promising antimalarial drug target due to its essential role in all parasite lifecycle stages. Furthermore, proteasome inhibitors have synergistic effects when combined with current first-line artemisinin and related analogues. Linear peptides that covalently inhibit the proteasome are effective at killing parasites and have a low propensity for inducing resistance.

View Article and Find Full Text PDF
Article Synopsis
  • The use of 3-Bromo-4,5-dihydroisoxazole (BDHI) as a selective electrophilic tool for targeting specific cysteines is crucial in drug discovery and covalent probe development.
  • A study showcased BDHI's ability to selectively engage with reactive cysteine residues in human proteins, distinguishing its reactivity from other electrophiles like haloacetamide.
  • BDHI demonstrated potential in biomedical applications by forming covalent bonds with significant proteins involved in cancer (GSTP1 and PIN1) and aiding the development of inhibitors for Bruton's tyrosine kinase (BTK).
View Article and Find Full Text PDF

During tumor development, invasion and metastasis, the intimate interaction between tumor and stroma shapes the tumor microenvironment and dictates the fate of tumor cells. Stromal cells can also influence anti-tumor immunity and response to immunotherapy. Understanding the molecular mechanisms that govern this complex and dynamic interplay, thus is important for cancer diagnosis and therapy.

View Article and Find Full Text PDF

Lysine malonylation is a recently characterized post-translational modification involved in the regulation of energy metabolism and gene expression. One unique feature of this post-translational modification is its potential susceptibility to decarboxylation, which poses possible challenges to its study. As a step towards addressing these challenges, we report the synthesis and evaluation of a stable isostere of malonyllysine.

View Article and Find Full Text PDF

Cells of the immune system utilize multiple proteases to regulate cell functions and orchestrate innate and adaptive immune responses. Dysregulated protease activities are implicated in many immune-related disorders; thus, protease inhibitors have been actively investigated for pharmaceutical development. Although historically considered challenging with concerns about toxicity, compounds that covalently modify the protease active site represent an important class of agents, emerging not only as chemical probes but also as approved drugs.

View Article and Find Full Text PDF

Fluorescently quenched probes that are specifically activated in the cancer microenvironment have great potential application for diagnosis, early detection, and surgical guidance. These probes are often designed to target specific enzymes associated with diseases by direct optimization using single purified enzymes. However, this can result in painstaking chemistry efforts to produce a probe with suboptimal performance when applied in vivo.

View Article and Find Full Text PDF

Salinipostin A (Sal A) is a potent antiplasmodial marine natural product with an undefined mechanism of action. Using a Sal A-derived activity-based probe, we identify its targets in the Plasmodium falciparum parasite. All of the identified proteins contain α/β serine hydrolase domains and several are essential for parasite growth.

View Article and Find Full Text PDF

Lon is a widely conserved housekeeping protease found in all domains of life. Bacterial Lon is involved in recovery from various types of stress, including tolerance to fluoroquinolone antibiotics, and is linked to pathogenesis in a number of organisms. However, detailed functional studies of Lon have been limited by the lack of selective, cell-permeant inhibitors.

View Article and Find Full Text PDF

Therapeutics with novel modes of action and a low risk of generating resistance are urgently needed to combat drug-resistant Plasmodium falciparum malaria. Here, we report that the peptide vinyl sulfones WLL-vs (WLL) and WLW-vs (WLW), highly selective covalent inhibitors of the P. falciparum proteasome, potently eliminate genetically diverse parasites, including K13-mutant, artemisinin-resistant lines, and are particularly active against ring-stage parasites.

View Article and Find Full Text PDF

The Plasmodium proteasome is an emerging antimalarial target due to its essential role in all the major life cycle stages of the parasite and its contribution to the establishment of resistance to artemisinin (ART)-based therapies. However, because of a similarly essential role for the host proteasome, the key property of any antiproteasome therapeutic is selectivity. Several parasite-specific proteasome inhibitors have recently been reported, however, their selectivity must be improved to enable clinical development.

View Article and Find Full Text PDF

Immunogens carried in lymphatic fluid drain via afferent vessels into regional lymph nodes and facilitate the efficient induction of appropriate immune responses. The lymphatic system possesses receptors recognizing hyaluronic acid (HA). Covalent conjugates of small-molecule TLR7/8 agonists with HA are entirely devoid of immunostimulatory activity in vitro.

View Article and Find Full Text PDF

The proteasome is a multi-component protease complex responsible for regulating key processes such as the cell cycle and antigen presentation. Compounds that target the proteasome are potentially valuable tools for the treatment of pathogens that depend on proteasome function for survival and replication. In particular, proteasome inhibitors have been shown to be toxic for the malaria parasite Plasmodium falciparum at all stages of its life cycle.

View Article and Find Full Text PDF

Kappa opioid receptor (KOR) modulation is a promising target for drug discovery efforts due to KOR involvement in pain, depression, and addiction behaviors. We recently reported a new class of triazole KOR agonists that displays significant bias toward G protein signaling over βarrestin2 recruitment; interestingly, these compounds also induce less activation of ERK1/2 map kinases than the balanced agonist, U69,593. We have identified structure-activity relationships around the triazole scaffold that allows for decreasing the bias for G protein signaling over ERK1/2 activation while maintaining the bias for G protein signaling over βarrestin2 recruitment.

View Article and Find Full Text PDF

Toll-like receptor (TLR) 7 and 8 agonists are potential vaccine adjuvants, since they directly activate APCs and enhance Th1-driven immune responses. Previous SAR investigations in several scaffolds of small molecule TLR7/8 activators pointed to the strict dependence of the selectivity for TLR7 vis-à-vis TLR8 on the electronic configurations of the heterocyclic systems, which we sought to examine quantitatively with the goal of developing "heuristics" to define structural requisites governing activity at TLR7 and/or TLR8. We undertook a scaffold-hopping approach, entailing the syntheses and biological evaluations of 13 different chemotypes.

View Article and Find Full Text PDF

Engagement of TLR7 in plasmacytoid dendritic cells leads to the induction of IFN-α/β which plays essential functions in the control of adaptive immunity. We had previously examined structure-activity relationships (SAR) in TLR7/8-agonistic imidazoquinolines with a focus on substituents at the N(1), C(2), N(3) and N(4) positions, and we now report SAR on 1H-imidazo[4,5-c]pyridines. 1-Benzyl-2-butyl-1H-imidazo[4,5-c]pyridin-4-amine was found to be a pure TLR7-agonist with negligible activity on TLR8.

View Article and Find Full Text PDF

Toll-like receptor (TLR)-8 agonists typified by the 2-alkylthiazolo[4,5-c]quinolin-4-amine (CL075) chemotype are uniquely potent in activating adaptive immune responses by inducing robust production of T helper 1-polarizing cytokines, suggesting that TLR8-active compounds could be promising candidate vaccine adjuvants, especially for neonatal vaccines. Alkylthiazoloquinolines with methyl, ethyl, propyl and butyl groups at C2 displayed comparable TLR8-agonistic potencies; activity diminished precipitously in the C2-pentyl compound, and higher homologues were inactive. The C2-butyl compound was unique in possessing substantial TLR7-agonistic activity.

View Article and Find Full Text PDF

We sought to explore the imidazo[1,2-a]pyridin-3-amines for TLR7 (or 8)-modulatory activities. This chemotype, readily accessed via the Groebke-Blackburn-Bienaymé multi-component reaction, resulted in compounds that were TLR7/8-inactive, but exhibited bacteriostatic activity against Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). To investigate the mechanism of antibacterial activity of this new chemotype, a resistant strain of S.

View Article and Find Full Text PDF

In our ongoing search toward identifying novel and synthetically simpler candidate vaccine adjuvants, we hypothesized that the imidazo[1,2-a]pyrazines, readily accessible via the Groebke-Blackburn-Bienaymé multicomponent reaction, would possess sufficient structural similarity with TLR7/8-agonistic imidazoquinolines. With pyridoxal as the aldehyde component, furo[2,3-c]pyridines, rather than the expected imidazo[1,2-a]pyridines, were obtained, which were characterized by NMR spectroscopy and crystallography. Several analogues were found to activate TLR8-dependent NF-κB signaling.

View Article and Find Full Text PDF

A series of novel N,N-dimethyl-N'-(5-(Ar-sulfonamido) benzo[d]isothiazol-3-yl)formimidamides was designed and synthesized as 5-HT(6) ligands. Here N,N-dimethyl formimidamides was used as a replacement for an aminoethyl moiety. In vitro functional assays demonstrated compounds 9b and 9i significantly inhibited the 5-HT-induced Ca(2+) increases (9b; IC(50)=0.

View Article and Find Full Text PDF

Toll-like receptor 2-agonistic lipopeptides typified by S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-R-cysteinyl-S-serine (PAM(2)CS) compounds are potential vaccine adjuvants. We had previously determined that at least one acyl group of optimal length (C(16)) and an appropriately orientated ester carbonyl group is essential for TLR2-agonistic activity. We now show that these structurally simpler analogues display agonistic activities with human, but not murine, TLR2.

View Article and Find Full Text PDF