ACS Appl Mater Interfaces
January 2021
Organic semiconductors (OSCs) are promising sensing materials for printed flexible gas sensors. However, OSCs are unstable in the humid air, which limits the realization of gas sensors for multiple usages. In this paper, we report a facile and effective way to improve the air stability of an OSC film to realize multiple reversibly used printed gas sensors by adding molecular additives.
View Article and Find Full Text PDFDesigning an efficient and stable hole transport layer (HTL) material is one of the essential ways to improve the performance of organic-inorganic perovskite solar cells (PSCs). Herein, for the first time, an efficient model of a hole transport material (HTM) is demonstrated by optimized doping of a conjugated polymer TFB (poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl)diphenylamine)]) with a non-hygroscopic p-type dopant F4-TCNQ (2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane) for high-efficiency PSCs. The PSC with the F4-TCNQ doped TFB exhibits the best power conversion efficiency (PCE) of 17.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2019
Low- k amorphous fluorinated polymers such as poly(perfluoroalkenylvinyl ether) (CYTOP) have widely been used as gate dielectrics for organic field-effect transistors (OFETs) because of their strong hydrophobicity to prevent the penetration of moisture and other contaminants and their perfect solvent orthogonality with organic semiconductors. Here, we report a new functionality of the fluorinated low- k polymer dielectrics, which is spontaneous p doping at the dielectric-semiconductor interface in OFETs. This functionality makes the ambipolar charge transport a unipolar p type.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2018
We report the synthesis of a new conjugated polymer composed of isoindigo (IID) and 2,3-bis[thiophenyl-2-yl]thiophene acrylonitrile (CNTVT) subunits for high-performance n-type organic field-effect transistors (OFETs). To realize high electron mobility for the IID-based conjugated polymer, an electron-withdrawing nitrile group is incorporated into the vinylene unit, thereby shifting the energy of the lowest unoccupied molecular orbital for efficient electron injection from Au electrodes without disrupting the backbone planarity. Uniaxially aligned IID-CNTVT-conjugated polymer films for efficient intramolecular charge transport are achieved by off-center spin-coating from preaggregated solutions.
View Article and Find Full Text PDFHigh electrical conductivity of metal oxide thin films needs uniform surface coverage, which has been the issue for the thin films based on electrospun nanofibers (NFs) that have advantage over the sputtered/spin-coated films with respect to large surface area and mechanical flexibility. Herein, we investigated a reduction in the sheet resistance of electrospun indium tin oxide (ITO) NF films with improved surface coverage. We found that the surface coverage depends significantly on the electrospinnable polymer concentration in the precursor solutions, especially after post-hot-plate annealing following the infrared radiation furnace treatment.
View Article and Find Full Text PDF