Naïve human pluripotent stem cells (hPSCs) provide a unique experimental platform of cell fate decisions during pre-implantation development, but their lineage potential remains incompletely characterized. As naïve hPSCs share transcriptional and epigenomic signatures with trophoblast cells, it has been proposed that the naïve state may have enhanced predisposition for differentiation along this extraembryonic lineage. Here we examined the trophoblast potential of isogenic naïve and primed hPSCs.
View Article and Find Full Text PDFG-protein-coupled receptors (GPCR) play important roles in controlling neurotransmitter and hormone release. Inhibition of voltage-gated Ca(2+) channels (Ca(2+) channels) by G protein betagamma subunits (Gbetagamma) is one prominent mechanism, but there is evidence for additional effects distinct from those on calcium entry. However, relatively few studies have investigated the Ca(2+)-channel-independent effects of Gbetagamma on transmitter release, so the impact of this mechanism remains unclear.
View Article and Find Full Text PDFPresynaptic inhibitory G protein-coupled receptors (GPCRs) can decrease neurotransmission by inducing interaction of Gbetagamma with the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex. We have shown that this action of Gbetagamma requires the carboxyl terminus of the 25-kDa synaptosome-associated protein (SNAP25) and is downstream of the well known inhibition of Ca2+ entry through voltage-gated calcium channels. We propose a mechanism in which Gbetagamma and synaptotagmin compete for binding to the SNARE complex.
View Article and Find Full Text PDFPresynaptic inhibition mediated by G protein-coupled receptors may involve a direct interaction between G proteins and the vesicle fusion machinery. The molecular target of this pathway is unknown. We demonstrate that Gbetagamma-mediated presynaptic inhibition in lamprey central synapses occurs downstream from voltage-gated Ca(2+) channels.
View Article and Find Full Text PDFThe activation of G protein-coupled receptors (GPCRs) can result in an inhibition of Ca(2+)-dependent hormone and neurotransmitter secretion. This has been attributed in part to G protein inhibition of Ca(2+) influx. However, a frequently dominant inhibitory effect, of unknown mechanism, also occurs distal to Ca(2+) entry.
View Article and Find Full Text PDFThrombin receptors couple to G(i/o), G(q), and G(12/13) proteins to regulate a variety of signal transduction pathways that underlie the physiological role of endothelial cells in wound healing or inflammation. Whereas the involvement of G(i), G(q), G(12), or G(13) proteins in thrombin signaling has been investigated extensively, the role of G(o) proteins has largely been ignored. To determine whether G(o) proteins could contribute to thrombin-mediated signaling in endothelial cells, we have developed minigenes that encode an 11-amino acid C-terminal peptide of G(o1) proteins.
View Article and Find Full Text PDF