In this study, the effect of internal pores formed by a superabsorbent polymer (SAP) was analyzed by evaluating the compressive strength, chloride penetration depth, drying shrinkage, and pore size distribution of SAP-containing concrete, while securing workability using a water-reducing agent (WRA). The experimental results showed that the amount of WRA necessary increased as the amount of SAP added increased, and that the compressive strength was the highest when the SAP content was 1.5% of the concrete mix.
View Article and Find Full Text PDFThis study analyzed the fundamental properties of concrete using steel slag, to test its viability as an aggregate material. An experimental investigation into the effect of steel slag as a coarse aggregate, and heavyweight waste glass as a fine aggregate, on the drying shrinkage of concrete was performed. The calculated shrinkage strain was compared to five different shrinkage prediction models, namely, the ACI 209, B3, KCI 2012, EC 2 and GL 2000 model codes, to evaluate their ability to accurately predict shrinkage behavior.
View Article and Find Full Text PDF