The QuantaMatrix Microfluidic Agarose Channel (QMAC) system was used for rapid drug susceptibility testing (DST). Here, we performed DST using QMAC integrated with the mycobacteria growth indicator tube (MGIT) liquid culture employing a specially designed cross agarose channel for the tuberculosis chip. MGIT-, QMAC-, and Löwenstein-Jensen (LJ)-DSTs were performed using 13 drugs.
View Article and Find Full Text PDFAntibiotic resistance is a global threat to modern society. Rapid determination of suitable antibiotics that inhibit bacterial growth can effectively reduce antibiotic resistance and improve clinical treatment. The conventional methods of antimicrobial susceptibility testing (AST) depend on optical density measurements, which require long-time incubation.
View Article and Find Full Text PDFThere is a high demand for novel approaches to counter the various challenges of conventional drug susceptibility testing (DST) for tuberculosis, the most prevalent infectious disease with significant global mortality. The QMAC-DST system was recently developed for rapid DST using image technology to track the growth of single cells of (MTB). The purpose of this study was to clinically validate the QMAC-DST system compared to conventional DST.
View Article and Find Full Text PDFThe Disc Agarose Channel (DAC) system utilizes microfluidics and imaging technologies and is fully automated and capable of tracking single cell growth to produce Mycobacterium tuberculosis (MTB) drug susceptibility testing (DST) results within 3~7 days. In particular, this system can be easily used to perform DSTs without the fastidious preparation of the inoculum of MTB cells. Inoculum effect is one of the major problems that causes DST errors.
View Article and Find Full Text PDFTuberculosis (TB) is a major global health problem, and multi-drug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB) are spreading throughout the world. However, conventional drug susceptibility test (DST) methods, which rely on the detection of the colony formation on a solid medium, require 1-2 months to the result. A rapid and accurate DST is necessary to identify patients with drug-resistant TB and treat them with appropriate drugs.
View Article and Find Full Text PDFA rapid antibiotic susceptibility test (AST) is desperately needed in clinical settings for fast and appropriate antibiotic administration. Traditional ASTs, which rely on cell culture, are not suitable for urgent cases of bacterial infection and antibiotic resistance owing to their relatively long test times. We describe a novel AST called single-cell morphological analysis (SCMA) that can determine antimicrobial susceptibility by automatically analyzing and categorizing morphological changes in single bacterial cells under various antimicrobial conditions.
View Article and Find Full Text PDFThe parallelization of microfluidic cytometry is expected to lead to considerably enhanced throughput enabling point-of-care diagnosis. In this article, the development of a microfluidic potentiometric multichannel cytometer is presented. Parallelized microfluidic channels sharing a fluid path inevitably suffer from interchannel signal crosstalk that results from electrical coupling within the microfluidic channel network.
View Article and Find Full Text PDFAn optofluidic maskless photopolymerization process was developed for in situ negatively charged nanoporous hydrogel [poly-AMPS (2-acrylamido-2-methyl-1-propanesulfonic acid)] fabrication. The optofluidic maskless lithography system, which combines a high power UV source and digital mirror device, enables fast polymerization of arbitrary shaped hydrogels in a microfluidic device. The poly-AMPS hydrogel structures were positioned near the intersections of two microchannels, and were used as a cation-selective filter for biological sample preconcentration.
View Article and Find Full Text PDF