Publications by authors named "Eun Sung Yang"

Development of assays to reliably identify and characterize anti-drug antibodies (ADAs) depends on positive control anti-idiotype (anti-id) reagents, which are used to demonstrate that the standards recommended by regulatory authorities are met. This work employs a set of therapeutic antibodies under clinical development and their corresponding anti-ids to investigate how different positive control reagent properties impact ADA assay development. Positive controls exhibited different response profiles and apparent assay analytical sensitivity values depending on assay format.

View Article and Find Full Text PDF
Article Synopsis
  • Novel monoclonal antibodies (MAbs) need to effectively neutralize various sarbecoviruses and adapt to new variants of SARS-CoV-2, with a focus on the class V epitope for broader protection.
  • The crystal structure of the SARS-CoV-2 receptor binding domain (RBD) in complex with the MAb WRAIR-2063 reveals its ability to target a conserved region, effectively binding to multiple variants and highlighting its potential as a universal therapeutic option.
  • This research on MAbs from vaccination or natural infection provides important insights into their role in combating COVID-19, suggesting the class V epitope could be a key target for developing future vaccines and therapies against related viruses.
View Article and Find Full Text PDF

The amino-acid composition of the immunoglobulin variable region has been observed to impact antibody pharmacokinetics (PK). Here, we sought to improve the PK of the broad HIV-1-neutralizing VRC01-class antibodies, VRC07-523LS and N6LS, by reducing the net positive charge in their variable domains. We used a structure-guided approach to generate a panel of antibody variants incorporating select Arg or Lys substituted to Asp, Gln, Glu, or Ser.

View Article and Find Full Text PDF

Alphaviruses are RNA viruses that represent emerging public health threats. To identify protective antibodies, we immunized macaques with a mixture of western, eastern, and Venezuelan equine encephalitis virus-like particles (VLPs), a regimen that protects against aerosol challenge with all three viruses. Single- and triple-virus-specific antibodies were isolated, and we identified 21 unique binding groups.

View Article and Find Full Text PDF

Enterovirus D68 (EV-D68) causes severe respiratory illness in children and can result in a debilitating paralytic disease known as acute flaccid myelitis. No treatment or vaccine for EV-D68 infection is available. Here, we demonstrate that virus-like particle (VLP) vaccines elicit a protective neutralizing antibody against homologous and heterologous EV-D68 subclades.

View Article and Find Full Text PDF
Article Synopsis
  • Infection with SARS-CoV-2 variants, like Beta, Gamma, and WA1, leads to the development of protective antibodies that can recognize multiple virus variants, including Delta and Omicron.
  • Researchers studied the types of antibodies produced in response to these infections and found a consistent pattern in their ability to bind to different viral variants, indicating a strong cross-reactive immune response.
  • The study also discovered that despite variations in the virus's antigens, similar gene usage and shared B cell clones were activated, suggesting that vaccines designed from a single ancestral variant can still effectively protect against newer strains.
View Article and Find Full Text PDF

Purpose: To assess trans-regional differences, reproducibility across different MRI scanners, and interobserver agreement of liver surface nodularity (LSN) score from routine liver MRI and to evaluate the correlation between LSN score and liver stiffness (LS) value on MR elastography.

Materials And Methods: Ninety patients who underwent gadoxetic acid-enhanced liver MRI twice using different MRI scanners within a year were evaluated. On axial hepatobiliary phase images, right anterior (LSN), right posterior (LSN), and left anterior hepatic surface (LSN) were chosen for the quantification of LSN score.

View Article and Find Full Text PDF

Humanity has faced three recent outbreaks of novel betacoronaviruses, emphasizing the need to develop approaches that broadly target coronaviruses. Here, we identify 55 monoclonal antibodies from COVID-19 convalescent donors that bind diverse betacoronavirus spike proteins. Most antibodies targeted an S2 epitope that included the K814 residue and were non-neutralizing.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) is nearly ubiquitous in adults. EBV causes infectious mononucleosis and is associated with B cell lymphomas, epithelial cell malignancies, and multiple sclerosis. The EBV gH/gL glycoprotein complex facilitates fusion of virus membrane with host cells and is a target of neutralizing antibodies.

View Article and Find Full Text PDF
Article Synopsis
  • *Production Challenges: Issues included sticking to pipette tips during dilution and proteolytic cleavage of its heavy chain, which was resolved by a targeted amino acid change to prevent this cleavage.
  • *Final Outcome: The modified version, CAP256V2LS, maintains its potent neutralization capabilities, improved stability in the body, and no signs of autoreactivity, making it a promising candidate for clinical development.
View Article and Find Full Text PDF

Broadly neutralizing antibodies (bNAbs) against HIV-1 are promising immunotherapeutic agents for treatment of HIV-1 infection. bNAbs can be administered to SHIV-infected rhesus macaques to assess their anti-viral efficacy; however, their delivery into macaques often leads to rapid formation of anti-drug antibody (ADA) responses limiting such assessment. Here, we depleted B cells in five SHIV-infected rhesus macaques by pretreatment with a depleting anti-CD20 antibody prior to bNAb infusions to reduce ADA.

View Article and Find Full Text PDF

The potential for future coronavirus outbreaks highlights the need to broadly target this group of pathogens. We used an epitope-agnostic approach to identify six monoclonal antibodies that bind to spike proteins from all seven human-infecting coronaviruses. All six antibodies target the conserved fusion peptide region adjacent to the S2' cleavage site.

View Article and Find Full Text PDF

Immunization with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike elicits diverse antibodies, but it is unclear if any of the antibodies can neutralize broadly against other beta-coronaviruses. Here, we report antibody WS6 from a mouse immunized with mRNA encoding the SARS-CoV-2 spike. WS6 bound diverse beta-coronavirus spikes and neutralized SARS-CoV-2 variants, SARS-CoV, and related sarbecoviruses.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing monoclonal antibodies (mAbs) can reduce the risk of hospitalization from coronavirus disease 2019 (COVID-19) when administered early. However, SARS-CoV-2 variants of concern (VOCs) have negatively affected therapeutic use of some authorized mAbs. Using a high-throughput B cell screening pipeline, we isolated LY-CoV1404 (bebtelovimab), a highly potent SARS-CoV-2 spike glycoprotein receptor binding domain (RBD)-specific antibody.

View Article and Find Full Text PDF

SARS-CoV-2 Omicron is highly transmissible and has substantial resistance to neutralization following immunization with ancestral spike-matched vaccines. It is unclear whether boosting with Omicron-matched vaccines would enhance protection. Here, nonhuman primates that received mRNA-1273 at weeks 0 and 4 were boosted at week 41 with mRNA-1273 or mRNA-Omicron.

View Article and Find Full Text PDF

Unlabelled: The potential for future coronavirus outbreaks highlights the need to develop strategies and tools to broadly target this group of pathogens. Here, using an epitope-agnostic approach, we identified six monoclonal antibodies that bound to spike proteins from all seven human-infecting coronaviruses. Epitope mapping revealed that all six antibodies target the conserved fusion peptide region adjacent to the S2' cleavage site.

View Article and Find Full Text PDF

An important consequence of infection with a SARS-CoV-2 variant is protective humoral immunity against other variants. The basis for such cross-protection at the molecular level is incompletely understood. Here we characterized the repertoire and epitope specificity of antibodies elicited by Beta, Gamma and ancestral variant infection and assessed their cross-reactivity to these and the more recent Delta and Omicron variants.

View Article and Find Full Text PDF