Dry mouth, or xerostomia, caused by salivary gland dysfunction significantly impacts oral/systemic health and quality of life. Although in vitro-generated artificial salivary glands have been considered as the fundamental solution, its structural complexity is difficult to reproduce using current biomaterials. Therefore, understanding and recapitulating the roles of biomacromolecules in salivary gland organogenesis is needed to solve these problems.
View Article and Find Full Text PDFNanomaterials with antioxidant properties are promising for treating reactive oxygen species (ROS)-related diseases. However, maintaining efficacy at low doses to minimize toxicity is a critical for clinical applications. Tuning the surface strain of metallic nanoparticles can enhance catalytic reactivity, which has rarely been demonstrated in metal oxide nanomaterials.
View Article and Find Full Text PDFRecently, there has been growing interest in replacing severely damaged salivary glands with artificial salivary gland functional units created in vitro by tissue engineering approaches. Although various materials such as poly(lactic--glycolic acid), polylactic acid, poly(glycolic acid), and polyethylene glycol hydrogels have been used as scaffolds for salivary gland tissue engineering, none of them is effective enough to closely recapitulate the branched structural complexity and heterogeneous cell population of native salivary glands. Instead of discovering new biomaterial candidates, we synthesized hyaluronic acid-catechol (HACA) conjugates to establish a versatile hyaluronic acid coating platform named "NiCHE (nature-inspired catechol-conjugated hyaluronic acid environment)" for boosting the salivary gland tissue engineering efficacy of the previously reported biomaterials.
View Article and Find Full Text PDFBicarbonate concentration in saliva is controlled by the action of acid-base transporters in salivary duct cells. We show for the first time expression of ATP6V1B1 in submandibular gland and introduce transforming growth factor-beta (TGF-β) as a novel regulator of V-ATPase subunits. Using QRT-PCR, immunoblotting, biotinylation of surface proteins, immunofluorescence, chromatin immunoprecipitation, and intracellular H( ) recording with H( )-sensitive dye 2',7'-bis-(carboxyethyl)-5-(and-6)-carboxyfluorescein we show that in the human submandibular gland (HSG) cell line, activation of TGF-β signaling upregulates ATP6V1E1 and ATP6V1B2, downregulates ATP6V1B1, and has no effect on ATP6V1A.
View Article and Find Full Text PDFPatients with primary Sjögren's syndrome, a systemic autoimmune disease, have been shown to have serum autoantibodies that react with the muscarinic acetylcholine type 3 receptor (M3R).Primary Sjögren's syndrome is a systemic autoimmune disease. Patients with primary Sjögren's syndrome have been shown to have serum autoantibodies that react with the muscarinic acetylcholine type 3 receptor (M3R).
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2015
Purinergic receptors, particularly type 7 (P2RX7), are involved in apoptotic cell death. However, the expression and function of P2RX7 are suppressed in HSG cells. In the present study, we explored whether P2RX7 function is regulated by epigenetic alteration of the receptors in two different cell lines, HSG cells derived from human submandibular ducts, and A253 cells, originated from human submandibular carcinoma.
View Article and Find Full Text PDFSodium bicarbonate cotransporters (NBCs) are involved in the pH regulation of salivary glands. However, the roles and regulatory mechanisms among different NBC isotypes have not been rigorously evaluated. We investigated the roles of two different types of NBCs, electroneutral (NBCn1) and electrogenic NBC (NBCe1), with respect to pH regulation and regulatory mechanisms using human submandibular glands (hSMGs) and HSG cells.
View Article and Find Full Text PDFKorean J Physiol Pharmacol
December 2014
Transient receptor potential vanilloid subtype 1 (TRPV1) was originally found in sensory neurons. Recently, it has been reported that TRPV1 is expressed in salivary gland epithelial cells (SGEC). However, the physiological role of TRPV1 in salivary secretion remains to be elucidated.
View Article and Find Full Text PDFLysophosphatidic acid (LPA) is a bioactive lysophospholipid involved in numerous physiological responses. However, the expression of LPA receptors and the role of the Hippo signaling pathway in epithelial cells have remained elusive. In this experiment, we studied the functional expression of LPA receptors and the associated signaling pathway using reverse transcriptase-PCR, microspectrofluorimetry, western blotting and immunocytochemistry in salivary gland epithelial cells.
View Article and Find Full Text PDFMuscarinic receptors, particularly the type 3 subtype (M3R), have an important role in exocrine secretion. M3R normally function in HSG cells originated from human submandibular gland ducts, but not in A253 and SGT cells, derived from human submandibular carcinoma and salivary gland adenocarcinoma. However, the underlying mechanism of this suppression has remained elusive.
View Article and Find Full Text PDFRegulation of intracellular pH is critical for the maintenance of cell homeostasis in response to stress. We used yeast two-hybrid screening to identify novel interacting partners of the pH-regulating transporter NBCe1-B. We identified Hsp70-like stress 70 protein chaperone (STCH) as interacting with NBCe1-B at the N-terminal (amino acids 96-440) region.
View Article and Find Full Text PDF