Myocardial infarction (MI) remains a leading cause of mortality worldwide, posing a significant challenge to healthcare systems. The limited regenerative capacity of cardiac tissue following MI results in chronic cardiac dysfunction, highlighting the urgent need for innovative therapeutic strategies. In this study, we explored the application of a multidimensional nanofibrous hydrogel for myocardial regeneration.
View Article and Find Full Text PDFObjective: The current study aimed to investigate the effect of dietary supplementation of xylanase alone or combination of xylanase and β-glucanase in high non-starch polysaccharides (NSP) diets with low energy on growth performance, meat quality, intestinal measurements, stress responses, and energy and nutrient utilization in broiler chickens.
Methods: A total of four hundred 8-d-old Ross 308 broiler chickens were randomly allotted to 1 of 4 treatment groups with 10 replicates. A positive control (PC) diet was formulated with adequate energy and nutrients, whereas a negative control (NC) diet had 100 kcal/kg less nitrogen-corrected apparent metabolizable energy than the PC diet with increasing inclusion of high NSP ingredients.
Objective: The current study aimed to investigate the effect of increasing β-mannanase supplementation in diets containing copra meal (CM) on growth performance, meat quality, liver health, intestinal morphology, and nutrient utilization in broiler chickens.
Methods: A total of 1,600 3-d-old Ross 308 broiler chickens (initial body weight±standard deviation = 43.3±1.
Organometallic molecules are promising for molecular electronic devices due to their potential to improve electrical conductance through access to complex orbital covalency that is not available to light-element organic molecules. However, studies of the formation of organometallic monolayers and their charge transport properties are scarce. Here, we report the cluster formation and charge transport properties of gold-triarylbismuthane-gold molecular junctions.
View Article and Find Full Text PDFNanomaterials (Basel)
August 2023
Electronic, optoelectronic, and optical devices have become integral to the fabric of the modern life, underpinning critical advancements in information technology, energy utilization, biotechnology, environmental monitoring, and nanotechnology [...
View Article and Find Full Text PDFLead-based halide perovskite materials are being developed as efficient light-absorbing materials for use in perovskite solar cells (PSCs). PSCs have shown remarkable progress in power conversion efficiency, increasing from 3.80% to more than 25% within a decade, showcasing their potential as a promising renewable energy technology.
View Article and Find Full Text PDFNanomaterials (Basel)
May 2023
Over the past decade, perovskite technology has been increasingly applied in solar cells, nanocrystals, and light-emitting diodes (LEDs). Perovskite nanocrystals (PNCs) have attracted significant interest in the field of optoelectronics owing to their exceptional optoelectronic properties. Compared with other common nanocrystal materials, perovskite nanomaterials have many advantages, such as high absorption coefficients and tunable bandgaps.
View Article and Find Full Text PDFThe current experiment was conducted to investigate the effect of individual or combination of dietary betaine (Bet) and glycine (Gly) on productive performance, stress response, liver health, and intestinal barrier function in broiler chickens raised under heat stress (HS) conditions. A total of four hundred twenty 21-d-old Ross 308 broiler chickens were randomly allotted to 1 of 5 dietary treatments with 7 replicates. Birds in treatment 1 were raised under the thermoneutral condition (TN; 23 ± 0.
View Article and Find Full Text PDFTo improve perovskite solar cell (PSC) performance, which is deeply related to perovskite layer quality, researchers have explored numerous strategies. Additive doping into perovskite precursors has been widely used to improve the PSC performance. In this study, we used isoxazole-a Lewis-base small molecule-as an additive for the CHNHPbI (MAPbI) precursor and explored how isoxazole effectively passivates defects in the perovskite structure.
View Article and Find Full Text PDFThe change of the crystal structure for Li(Ni Co Al )O as a cathode material in a Li-ion battery is traced. During charging and discharging, the crystallographic change of Li (Ni Co Al )O (x ≈ 1.0-0.
View Article and Find Full Text PDFThe chemical modification of electrode surfaces has attracted significant attention for lowering the limit of detection or for improving the recognition of biomolecules; however, the chemical processes are complex, dangerous, and difficult to control. Therefore, instead of the chemical process, we physically modified the surface of carbon-nanotube/polydimethylsiloxane composite electrodes by dip coating them with functionalized multi-walled carbon nanotubes (F-MWCNTs). These electrodes are used as working electrodes in electrochemistry, where they act as a recognition layer for sequence-specific DNA sensing through π-π interactions.
View Article and Find Full Text PDFOrganic semiconductors are highly interface-sensitive, and therefore chemical functionalization using self-assembled monolayers (SAMs) is often adopted to tailor their properties. This study clarifies the synergistic effects of electrode and dielectric SAMs on the behavior of solution-processed organic field-effect transistors (OFETs). Utilization of a self-consistent device model enables a physically robust treatment of the measured electrical characteristics of the OFETs, thus providing highly reliable materials, interface, morphology, and transport parameters.
View Article and Find Full Text PDFLead(II)-acetate (Pb(Ac)) is a promising lead source for the preparation of organolead trihalide perovskite materials, which avoids the use of inconvenient anti-solvent treatment. In this study, we investigated the effect of cesium doping on the performance of Pb(Ac)-based perovskite solar cells (PSCs). We demonstrate that the quality of the CHNHPbI perovskite film was improved with increased crystallinity and reduced pinholes by doping the perovskite with 5 mol% cesium.
View Article and Find Full Text PDFThe role of dental pulp stem cells (DPSCs) in dental tissue regeneration is gaining attention because DPSCs can differentiate into odontoblasts and other specialized cell types. Epigenetic modification has been found to play an important role in cell differentiation and regulation, among which histone deacetylase (HDAC) is involved in suppressing genes by removing histone acetyl groups. The use of HDAC inhibitor to control this is increasing and has been widely studied by many researchers.
View Article and Find Full Text PDFTissue Eng Regen Med
February 2020
Background: Melanogenesis is a biological process resulting in the production of melanin pigment, which plays an important role in the prevention of sun-induced skin injury and determines the hair and skin color. Melanin has the ability to block ultraviolet radiation and scavenge free oxygen radicals, thus protecting the skin from their harmful effects. Agents that increase melanin synthesis in melanocytes may reduce the risk of photodamage and skin cancer.
View Article and Find Full Text PDFDespite advances in medical treatments, the proportion of the population suffering from alopecia is increasing, thereby creating a need for new treatments to control hair loss and prevent balding. Human hair follicle dermal papilla cells (hDPCs), a type of specialized fibroblast in the hair bulb, play an essential role in controlling hair growth and in conditions like androgenic alopecia. This study aimed to evaluate the intensity-dependent effect of extremely low-frequency electromagnetic fields (ELF-EMFs) on the expression of anagen-related molecules in hDPCs in vitro.
View Article and Find Full Text PDFThe purpose of the present study is to evaluate the effect of rice bran ash mineral extract (RBM) on pigmentation in zebrafish (). Melanin has the ability to block ultraviolet (UV) radiation and scavenge free oxygen radicals, thus protecting the skin from their harmful effects. Agents that increase melanin synthesis in melanocytes may reduce the risk of photodamage and skin cancer.
View Article and Find Full Text PDFWe fabricated a composite of multi-walled carbon nanotube and polydimethylsiloxane and utilized it as an electrode for DNA sensing using electrochemical impedance spectroscopy. Without any surface modification or probe immobilization, often necessary for other electrodes, this electrode also acts as a recognition layer for DNA via π-π interactions between the multi-walled carbon nanotube and DNA. This electrode is easily reusable via a simple cleansing process, because there are no covalently bonded adsorbates on the electrode.
View Article and Find Full Text PDFIn this study, we introduced alcohol based vapor annealing of a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) layer for fabricating high-performance inverted perovskite solar cells. Atomic force microscopy measurements and atomistic theoretical simulations indicated that phase separation between PEDOT and PSS was enhanced by this annealing, improving the hole conductivity at the PEDOT:PSS layer. As a result of using methanol, the short-circuit current density improved from 20.
View Article and Find Full Text PDFBiosens Bioelectron
September 2015
All-solution-processed, easily-made, flexible multi-walled carbon nanotube (MWCNT)/polydimethylsiloxane (PDMS)-based electrodes were fabricated and used for electrochemical DNA sensors. These electrodes could serve as a recognition layer for DNA, without any surface modification, through π-π interactions between the MWCNTs and DNA, greatly simplifying the fabrication process for DNA sensors. The electrodes were directly connected to an electrochemical analyzer in the differential pulse voltammetry (DPV) and cyclic voltammetry (CV) measurements, where methylene blue was used as a redox indicator.
View Article and Find Full Text PDFWe present a surface plasmon resonance (SPR) based multimode fiber sensor with non-golden bimetallic coating. Our detection scheme used, which is capable of measuring the combined effects of SPR-induced birefringence and intensity changes, supported the minimum resolvable refractive index (RI) of 5.8 × 10(-6) RIU with the operating RI range of 0.
View Article and Find Full Text PDFBiosens Bioelectron
March 2014
We developed a simple and sensitive method for sequence-specific DNA detection using functionalized graphene (FG) and methylene blue (MB). Target DNA with a specific sequence was identified by differential-pulse voltammetry, which produces a change in the redox currents of the incorporated MB. FG played a critical role in enhancing the sensitivity of DNA detection and reduced the concentration of MB substantially near the electrodes when the sequence of the target DNA was not complementary to that of the probe by adsorbing the single-stranded DNA with the bound MB, and sinking.
View Article and Find Full Text PDFGiven that half-metals are promising futuristic materials for spintronics, organic materials showing half-metal character are highly desirable for spintronic devices, not only owing to their weak spin-orbit and hyperfine interactions, but also their light and flexible properties. We predict that a two-dimensional organic 2,4,6-tri-(1,3,5-triazinyl)methyl radical polymer has half-metallic properties as well as a spontaneous magnetic ordering at ambient temperature. The quantum transmission is studied based on the nonequilibrium Green function theory coupled with density functional theory.
View Article and Find Full Text PDFProtonated and deprotonated adipic acids (PAA: HOOC-(CH(2))(4)--COOH(2) (+) and DAA: HOOC-(CH(2))(4)-COO(-)) have a charged hydrogen bond under the influence of steric constraint due to the molecular skeleton of a circular ring. Despite the similarity between PAA and DAA, it is surprising that the lowest energy structure of PAA is predicted to have (H(2)O..
View Article and Find Full Text PDF