The aim of our study was to evaluate the specific performance of an artificial intelligence (AI) algorithm for lung nodule detection in chest radiography for a larger number of nodules of different sizes and densities using a standardized phantom approach. A total of 450 nodules with varying density (d1 to d3) and size (3, 5, 8, 10 and 12 mm) were inserted in a Lungman phantom at various locations. Radiographic images with varying projections were acquired and processed using the AI algorithm for nodule detection.
View Article and Find Full Text PDFBackground: Radiation dose should be as low as reasonably achievable. With the invention of photon-counting detector computed tomography (PCD-CT), the radiation dose may be considerably reduced.
Purpose: To evaluate the potential of PCD-CT for dose reduction in pulmonary nodule visualization for human readers as well as for computer-aided detection (CAD) studies.
Current social-technical and political conditions threaten the integrity of the Amazon biome. Overcoming these lock-ins requires structural transformations away from conventional economies towards 'socio-bioeconomies' (SBEs). SBEs are economies based on the sustainable use and restoration of Amazonian ecosystems, as well as Indigenous and rural livelihood systems in the region.
View Article and Find Full Text PDFObjectives: The aim of this study was to evaluate the potential use of simulated radiation doses from a dual-split CT scan for dose optimization by comparing their lesion detectability to dose-matched single-energy CT acquisitions at different radiation dose levels using a mathematical model observer.
Materials And Methods: An anthropomorphic abdominal phantom with liver lesions (5-10 mm, both hyperattenuating and hypoattenuating) was imaged using a third-generation dual-source CT in single-energy dual-source mode at 100 kVp and 3 radiation doses (5, 2.5, 1.
Objectives: Our study comprised a single-center retrospective in vitro correlation between spectral properties, namely ρ/Z values, derived from scanning blood samples using dual-energy computed tomography (DECT) with the corresponding laboratory hemoglobin/hematocrit (Hb/Hct) levels and assessed the potential in anemia-detection.
Methods: DECT of 813 patient blood samples from 465 women and 348 men was conducted using a standardized scan protocol. Electron density relative to water (ρ or rho), effective atomic number (Z), and CT attenuation (Hounsfield unit) were measured.
Rationale And Objectives: To evaluate and compare the effectiveness of contrast media subtraction and kidney stone detection between a virtual non-iodine reconstruction algorithm (VNI; PureCalcium) and a virtual non-contrast (VNC) algorithm in excretory phase photon-counting detector computed tomography (PCD-CT), using a 3D printed kidney phantom under various tube voltages and radiation doses.
Materials And Methods: A 3D-printed kidney phantom, holding Calcium Oxalate (CaOx) and uric acid stones within contrast-enhanced calyces, was created. The calyx density mirrored the average density observed in 200 excretory phase patients (916 HU at 110 kV).
Purpose To compare image quality, diagnostic performance, and conspicuity between single-energy and multi-energy images for endoleak detection at CT angiography (CTA) after endovascular aortic repair (EVAR). Materials and Methods In this single-center prospective randomized controlled trial, individuals undergoing CTA after EVAR between August 2020 and May 2022 were allocated to imaging using either low-kilovolt single-energy images (SEI; 80 kV, group A) or low-kiloelectron volt virtual monoenergetic images (VMI) at 40 and 50 keV from multi-energy CT (80/Sn150 kV, group B). Scan protocols were dose matched (volume CT dose index: mean, 4.
View Article and Find Full Text PDFObjectives: The aim of this study was to evaluate the optimal energy level of virtual monoenergetic images (VMIs) from photon-counting detector computed tomography (CT) for the detection of liver lesions as a function of phantom size and radiation dose.
Materials And Methods: An anthropomorphic abdominal phantom with liver parenchyma and lesions was imaged on a dual-source photon-counting detector CT at 120 kVp. Five hypoattenuating lesions with a lesion-to-background contrast difference of -30 HU and -45 HU and 3 hyperattenuating lesions with +30 HU and +90 HU were used.
Objectives: With the introduction of clinical photon-counting detector computed tomography (PCD-CT) and its novel reconstruction techniques, a quantitative investigation of different acquisition and reconstruction settings is necessary to optimize clinical acquisition protocols for metal artifact reduction.
Materials And Methods: A multienergy phantom was scanned on a clinical dual-source PCD-CT (NAEOTOM Alpha; Siemens Healthcare GmbH) with 4 different central inserts: water-equivalent plastic, aluminum, steel, and titanium. Acquisitions were performed at 120 kVp and 140 kVp (CTDI vol 10 mGy) and reconstructed as virtual monoenergetic images (VMIs; 110-150 keV), as T3D, and with the standard reconstruction "none" (70 keV VMI) using different reconstruction kernels (Br36, Br56) and with as well as without iterative metal artifact reduction (iMAR).
Objectives: To introduce an automated computational algorithm that estimates the global noise level across the whole imaging volume of PET datasets.
Methods: [F]FDG PET images of 38 patients were reconstructed with simulated decreasing acquisition times (15-120 s) resulting in increasing noise levels, and with block sequential regularized expectation maximization with beta values of 450 and 600 (Q.Clear 450 and 600).
Purpose: To assess image quality and detectability of interstitial lung changes using multiple radiation doses from the same chest CT scan of patients with suspected interstitial lung disease (ILD).
Method: Retrospective study of consecutive adult patients with suspected ILD receiving unenhanced chest CT as single-energy dual-source acquisition at 100 kVp (Dual-split mode). 67% and 33% of the overall tube current time product were assigned to tube A and B, respectively.
Purpose: Inguinal hernias are mainly diagnosed clinically, but imaging can aid in equivocal cases or for treatment planning. The purpose of this study was to evaluate the diagnostic performance of CT with Valsalva maneuver for the diagnosis and characterization of inguinal hernias.
Methods: This single-center retrospective study reviewed all consecutive Valsalva-CT studies between 2018 and 2019.
Radiol Cardiothorac Imaging
June 2023
Purpose: To assess the accuracy of aortic valve calcium (AVC), mitral annular calcium (MAC), and coronary artery calcium (CAC) quantification and risk stratification using virtual noncontrast (VNC) images from late enhancement photon-counting detector CT as compared with true noncontrast images.
Materials And Methods: This retrospective, institutional review board-approved study evaluated patients undergoing photon-counting detector CT between January and September 2022. VNC images were reconstructed from late enhancement cardiac scans at 60, 70, 80, and 90 keV using quantum iterative reconstruction (QIR) strengths of 2-4.
Objectives: The aim of this study was to compare image quality and endoleak detection after endovascular abdominal aortic aneurysm repair between a triphasic computed tomography (CT) with true noncontrast (TNC) and a biphasic CT with virtual noniodine (VNI) images on photon-counting detector CT (PCD-CT).
Materials And Methods: Adult patients after endovascular abdominal aortic aneurysm repair who received a triphasic examination (TNC, arterial, venous phase) on a PCD-CT between August 2021 and July 2022 were retrospectively included. Endoleak detection was evaluated by 2 blinded radiologists on 2 different readout sets (triphasic CT with TNC-arterial-venous vs biphasic CT with VNI-arterial-venous).
Rationale And Objectives: To investigate the impact of virtual monoenergetic images (VMI) from photon-counting detector CT (PCD-CT) on the enhancement and classification of renal cysts.
Materials And Methods: Adults with renal cysts (≥7 mm) who received a triphasic examination on a clinical PCD-CT (120 kVp; IQ level 68) between July 2021 and March 2022 were retrospectively identified. Only non-enhancing cysts (enhancement<10 HU between unenhanced and venous phase at 70 keV) were included.
Background/aim: To evaluate the impact of high data rate and sampling frequency detector technology compared to standard scan equipment on the image quality in abdominal computed tomography (CT) of overweight and obese patients.
Patients And Methods: A total of 173 patients were retrospectively included in this study. Objective image quality in abdominal CT was evaluated using comparative analysis with new detector technology prior to market launch and standard CT equipment.
Objectives: To assess the accuracy of low-dose dual-energy computed tomography (DECT) to differentiate uric acid from non-uric acid kidney stones in two generations of dual-source DECT with stone composition analysis as the reference standard.
Methods: Patients who received a low-dose unenhanced DECT for the detection or follow-up of urolithiasis and stone extraction with stone composition analysis between January 2020 and January 2022 were retrospectively included. Collected stones were characterized using X-ray diffraction.
Radiol Cardiothorac Imaging
February 2023
Purpose: To develop and evaluate a low-volume contrast media protocol for thoracoabdominal CT angiography (CTA) with photon-counting detector (PCD) CT.
Materials And Methods: This prospective study included consecutive participants (April-September 2021) who underwent CTA with PCD CT of the thoracoabdominal aorta and previous CTA with energy-integrating detector (EID) CT at equal radiation doses. In PCD CT, virtual monoenergetic images (VMI) were reconstructed in 5-keV intervals from 40 to 60 keV.
Objectives: To assess the impact of low kilo-electronvolt (keV) virtual monoenergetic image (VMI) energies and iterative reconstruction on image quality of clinical photon-counting detector coronary CT angiography (CCTA).
Methods: CCTA with PCD-CT (prospective ECG-triggering, 120 kVp, automatic tube current modulation) was performed in a high-end cardiovascular phantom with dynamic flow, pulsatile heart motion, and including different calcified plaques with various stenosis grades and in 10 consecutive patients. VMI at 40,50,60 and 70 keV were reconstructed without (QIR-off) and with all quantum iterative reconstruction (QIR) levels (QIR-1 to 4).
Background: Highly effective COVID-19 vaccines are available and free of charge in the United States. With adequate coverage, their use may help return life back to normal and reduce COVID-19-related hospitalization and death. Many barriers to widespread inoculation have prevented herd immunity, including vaccine hesitancy, lack of vaccine knowledge, and misinformation.
View Article and Find Full Text PDFBackground/aim: The aim was to evaluate the effect of a combined precision matrix and high sampling rate on the delineation of anatomical structures and objective image quality in single source CT in a qualitative approach.
Materials And Methods: An anthropomorphic thoracic phantom was used to evaluate the objective image quality parameters, including image noise, noise power spectrum, image stepness and Q for different CT scanners including high/standard matrix and framing frequency setups. Scan parameters were standardized over all scanners.
Purpose: The purpose of this study was to evaluate the impact of virtual monoenergetic image (VMI) energies and iodine maps on the diagnosis of pleural empyema with photon counting detector computed tomography (PCD-CT).
Materials And Methods: In this IRB-approved retrospective study, consecutive patients with non-infectious pleural effusion or histopathology-proven empyema were included. PCD-CT examinations were performed on a dual-source PCD-CT in the multi-energy (QuantumPlus) mode at 120 kV with weight-adjusted intravenous contrast-agent.
Purpose: To assess the effect of ultra-high-resolution coronary CT angiography (CCTA) with photon-counting detector (PCD) CT on quantitative coronary plaque characterization.
Materials And Methods: In this IRB-approved study, 22 plaques of 20 patients (7 women; mean age 77 ± 8 years, mean body mass index 26.1 ± 3.
Objectives: To assess image noise, diagnostic performance, and potential for radiation dose reduction of photon-counting detector (PCD) computed tomography (CT) with quantum iterative reconstruction (QIR) in the detection of hypoattenuating and hyperattenuating focal liver lesions compared with energy-integrating detector (EID) CT.
Materials And Methods: A medium-sized anthropomorphic abdominal phantom with liver parenchyma and lesions (diameter, 5-10 mm; hypoattenuating and hyperattenuating from -30 HU to +90 HU at 120 kVp) was used. The phantom was imaged on ( a ) a third-generation dual-source EID-CT (SOMATOM Force, Siemens Healthineers) in the dual-energy mode at 100 and 150 kVp with tin filtration and ( b ) a clinical dual-source PCD-CT at 120 kVp (NAEOTOM Alpha, Siemens).