DYRK1A is a dosage-sensitive protein kinase that fulfills key roles during development and in tissue homeostasis, and its dysregulation results in human pathologies. DYRK1A is present in both the nucleus and cytoplasm of mammalian cells, although its nuclear function remains unclear. Genome-wide analysis of DYRK1A-associated loci reveals that the kinase is recruited preferentially to promoters of genes actively transcribed by RNA polymerase II (RNAPII), which are functionally associated with translation, RNA processing, and cell cycle.
View Article and Find Full Text PDFSpecificity of signaling kinases and phosphatases toward their targets is usually mediated by docking interactions with substrates and regulatory proteins. Here, we characterize the motifs involved in the physical and functional interaction of the phosphatase calcineurin with a group of modulators, the RCAN protein family. Mutation of key residues within the hydrophobic docking-cleft of the calcineurin catalytic domain impairs binding to all human RCAN proteins and to the calcineurin interacting proteins Cabin1 and AKAP79.
View Article and Find Full Text PDFSingle amino acid repeats are prevalent in eukaryote organisms, although the role of many such sequences is still poorly understood. We have performed a comprehensive analysis of the proteins containing homopolymeric histidine tracts in the human genome and identified 86 human proteins that contain stretches of five or more histidines. Most of them are endowed with DNA- and RNA-related functions, and, in addition, there is an overrepresentation of proteins expressed in the brain and/or nervous system development.
View Article and Find Full Text PDF