NbO has the potential for a variety of electronic applications due to its electrically induced insulator-to-metal transition (IMT) characteristic. In this study, we find that the IMT behavior of NbO follows the field-induced nucleation by investigating the delay time dependency at various voltages and temperatures. Based on the investigation, we reveal that the origin of leakage current in NbO is partly due to insufficient Schottky barrier height originating from interface defects between the electrodes and NbO layer.
View Article and Find Full Text PDFReliability characteristics (retention and endurance) of RRAM are critical for its practical realization and need to be improved. In this work, we confirmed the trade-off between retention and endurance by using various top electrode thickness conditions. The trade-off between retention and endurance characteristics was mainly due to the different amount of oxygen in scavenging layer (Ta) and the amount of oxygen vacancy in switching layer (HfO2).
View Article and Find Full Text PDFWe have investigated the analogue memory characteristics of an oxide-based resistive-switching device under an electrical pulse to mimic biological spike-timing-dependent plasticity synapse characteristics. As a synaptic device, a TiN/Pr0.7Ca0.
View Article and Find Full Text PDFA 3D high-density switching device is realized utilizing titanium oxide, which is the most optimum material, but which is not practically demonstrated yet. The 1S1R (one ReRAM with the developed switching device) exhibits memory characteristics with a significantly suppressed sneak current, which can be used to realize high-density ReRAM applications.
View Article and Find Full Text PDFIn this research, we analyzed the multi-functional role of a tunnel barrier that can be integrated in devices. This tunnel barrier, acting as an internal resistor, changes its resistance with applied bias. Therefore, the current flow in the devices can be controlled by a tunneling mechanism that modifies the tunnel barrier thickness for non-linearity and switching uniformity of devices.
View Article and Find Full Text PDFWe demonstrate a high-performance selection device by utilizing the concept of crested oxide barrier to suppress the sneak current in bipolar resistive memory arrays. Using a TaO(x)/TiO(2)/TaO(x) structure, high current density over 10(7) A cm(-2) and excellent nonlinear characteristics up to 10(4) were successfully demonstrated. On the basis of the defect chemistry and SIMS depth profile result, we found that some Ta atoms gradually diffused into TiO(2) film, and consequently, the energy band of the TiO(2) film was symmetrically bent at the top and bottom TaO(x)/TiO(2) interfaces and modified as a crested oxide barrier.
View Article and Find Full Text PDF