IEEE J Biomed Health Inform
August 2024
Motion artifacts compromise the quality of magnetic resonance imaging (MRI) and pose challenges to achieving diagnostic outcomes and image-guided therapies. In recent years, supervised deep learning approaches have emerged as successful solutions for motion artifact reduction (MAR). One disadvantage of these methods is their dependency on acquiring paired sets of motion artifact-corrupted (MA-corrupted) and motion artifact-free (MA-free) MR images for training purposes.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2023
Prostate cancer (PCa) is one of the most prevalent cancers in men. Early diagnosis plays a pivotal role in reducing the mortality rate from clinically significant PCa (csPCa). In recent years, bi-parametric magnetic resonance imaging (bpMRI) has attracted great attention for the detection and diagnosis of csPCa.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2023
The analysis of maternal factors that impact the normal development of the fetal thalamus is an emerging field of research and requires the retrospective measurement of fetal thalamus diameter (FTD). Unfortunately, FTD is not measured in routine 2D ultrasound (2D-US) screenings of fetuses. Manual measurement of FTD is a laborious, difficult, and error-prone process because the thalamus lacks well-defined boundaries in 2D-US images of the fetal brain as it has a similar echogenicity to the surrounding brain tissue.
View Article and Find Full Text PDFPeriodontitis is a serious oral disease that can lead to severe conditions such as bone loss and teeth falling out if left untreated. Diagnosis of radiographic bone loss (RBL) is critical for the staging and treatment of periodontitis. Unfortunately, the RBL diagnosis by examining the panoramic radiographs is time-consuming.
View Article and Find Full Text PDFIntroduction: Growing pressures upon Emergency Departments [ED] call for new ways of working with frequent presenters who, although small in number, place extensive demands on services, to say nothing of the costs and consequences for the patients themselves. EDs are often poorly equipped to address the multi-dimensional nature of patient need and the complex circumstances surrounding repeated presentation. Employing a model of intensive short-term community-based case management, the Checkpoint program sought to improve care coordination for this patient group, thereby reducing their reliance on ED.
View Article and Find Full Text PDFJMIR Public Health Surveill
March 2021
Background: Outbreaks of infectious diseases pose great risks, including hospitalization and death, to public health. Therefore, improving the management of outbreaks is important for preventing widespread infection and mitigating associated risks. Mobile health technology provides new capabilities that can help better capture, monitor, and manage infectious diseases, including the ability to quickly identify potential outbreaks.
View Article and Find Full Text PDFThe accuracy and robustness of image classification with supervised deep learning are dependent on the availability of large-scale labelled training data. In medical imaging, these large labelled datasets are sparse, mainly related to the complexity in manual annotation. Deep convolutional neural networks (CNNs), with transferable knowledge, have been employed as a solution to limited annotated data through: 1) fine-tuning generic knowledge with a relatively smaller amount of labelled medical imaging data, and 2) learning image representation that is invariant to different domains.
View Article and Find Full Text PDFThe availability of large-scale annotated image datasets and recent advances in supervised deep learning methods enable the end-to-end derivation of representative image features that can impact a variety of image analysis problems. Such supervised approaches, however, are difficult to implement in the medical domain where large volumes of labelled data are difficult to obtain due to the complexity of manual annotation and inter- and intra-observer variability in label assignment. We propose a new convolutional sparse kernel network (CSKN), which is a hierarchical unsupervised feature learning framework that addresses the challenge of learning representative visual features in medical image analysis domains where there is a lack of annotated training data.
View Article and Find Full Text PDFObjective: To examine the characteristics of frequent visitors (FVs) to emergency departments (EDs) and develop a predictive model to identify those with high risk of a future representations to ED among younger and general population (aged ≤70 years).
Design And Setting: A retrospective analysis of ED data targeting younger and general patients (aged ≤70 years) were collected between 1 January 2009 and 30 June 2016 from a public hospital in Australia.
Participants: A total of 343 014 ED presentations were identified from 170 134 individual patients.
IEEE Trans Biomed Eng
September 2017
Objective: Segmentation of skin lesions is an important step in the automated computer aided diagnosis of melanoma. However, existing segmentation methods have a tendency to over- or under-segment the lesions and perform poorly when the lesions have fuzzy boundaries, low contrast with the background, inhomogeneous textures, or contain artifacts. Furthermore, the performance of these methods are heavily reliant on the appropriate tuning of a large number of parameters as well as the use of effective preprocessing techniques, such as illumination correction and hair removal.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
November 2017
The segmentation of skin lesions in dermoscopic images is a fundamental step in automated computer-aided diagnosis of melanoma. Conventional segmentation methods, however, have difficulties when the lesion borders are indistinct and when contrast between the lesion and the surrounding skin is low. They also perform poorly when there is a heterogeneous background or a lesion that touches the image boundaries; this then results in under- and oversegmentation of the skin lesion.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2015
The segmentation of skin lesions in dermoscopic images is considered as one of the most important steps in computer-aided diagnosis (CAD) for automated melanoma diagnosis. Existing methods, however, have problems with over-segmentation and do not perform well when the contrast between the lesion and its surrounding skin is low. Hence, in this study, we propose a new automated saliency-based skin lesion segmentation (SSLS) that we designed to exploit the inherent properties of dermoscopic images, which have a focal central region and subtle contrast discrimination with the surrounding regions.
View Article and Find Full Text PDF