Publications by authors named "Euiheon Chung"

In optical imaging of solid tumors, signal contrasts derived from inherent tissue temperature differences have been employed to distinguish tumor masses from surrounding tissue. Moreover, with the advancement of active infrared imaging, dynamic thermal characteristics in response to exogenous thermal modulation (heating and cooling) have been proposed as novel measures of tumor assessment. Contrast factors such as the average rate of temperature changes and thermal recovery time constants have been investigated through an active thermal modulation imaging approach, yielding promising tumor characterization results in a xenograft mouse model.

View Article and Find Full Text PDF
Article Synopsis
  • - Neuropathic pain results from hyperactive spinal dorsal horn neurons, leading to symptoms like allodynia, and the role of astrocyte-neuron interactions is not fully understood.
  • - Research found that reactive astrocytes release excessive GABA, which unexpectedly excites nearby neurons due to altered GABA processing mechanisms, linking astrocytic activity to increased neuronal hyperexcitability.
  • - Inhibiting monoamine oxidase B (MAOB) can reverse these changes, restoring normal GABA function, reducing glucose metabolism in the dorsal horn, and alleviating allodynia, suggesting that astrocytic GABA plays a crucial role in neuropathic pain.
View Article and Find Full Text PDF

Background/aim: Urinary bladder cancer has various etiologies and tends to recur and then progress to a higher grade. When muscles are invaded, the response to conventional therapy is poor and the quality of life deteriorates rapidly. Here, we summarize and compare two representative methods used to create the syngeneic mouse models required for immunological research.

View Article and Find Full Text PDF

Laser speckle imaging (LSI) techniques have emerged as a promising method for visualizing functional blood vessels and tissue perfusion by analyzing the speckle patterns generated by coherent light interacting with living biological tissue. These patterns carry important biophysical tissue information including blood flow dynamics. The noninvasive, label-free, and wide-field attributes along with relatively simple instrumental schematics make it an appealing imaging modality in preclinical and clinical applications.

View Article and Find Full Text PDF

An ischemic stroke typically accompanies numerous disorders ranging from somatosensory dysfunction to cognitive impairments, inflicting patients with various neurologic symptoms. Among pathologic outcomes, post-stroke olfactory dysfunctions are frequently observed. Despite the well-known prevalence, therapy options for such compromised olfaction are limited, likely due to the complexity of olfactory bulb architecture, which encompasses both the peripheral and central nervous systems.

View Article and Find Full Text PDF

In microscopic imaging of biological tissues, particularly real-time visualization of neuronal activities, rapid acquisition of volumetric images poses a prominent challenge. Typically, two-dimensional (2D) microscopy can be devised into an imaging system with 3D capability using any varifocal lens. Despite the conceptual simplicity, such an upgrade yet requires additional, complicated device components and usually suffers from a reduced acquisition rate, which is critical to properly document rapid neurophysiological dynamics.

View Article and Find Full Text PDF

Diabetes mellitus accompanies an abnormally high glucose level in the bloodstream. Early diagnosis and proper glycemic management of blood glucose are essential to prevent further progression and complications. Biosensor-based colorimetric detection has progressed and shown potential in portable and inexpensive daily assessment of glucose levels because of its simplicity, low-cost, and convenient operation without sophisticated instrumentation.

View Article and Find Full Text PDF

Optical neuroimaging provides an effective neuroscience tool for multi-scale investigation of the neural structures and functions, ranging from molecular, cellular activities to the inter-regional connectivity assessment. Amongst experimental preparations, the implementation of an artificial window to the central nervous system (CNS) is primarily required for optical visualization of the CNS and associated brain activities through the opaque skin and bone. Either thinning down or removing portions of the skull or spine is necessary for unobstructed long-term observations, for which types of the cranial and spinal window and applied materials vary depending on the study objectives.

View Article and Find Full Text PDF

Purpose: Develop a deep learning-based automated method to segment meibomian glands (MG) and eyelids, quantitatively analyze the MG area and MG ratio, estimate the meiboscore, and remove specular reflections from infrared images.

Methods: A total of 1600 meibography images were captured in a clinical setting. 1000 images were precisely annotated with multiple revisions by investigators and graded 6 times by meibomian gland dysfunction (MGD) experts.

View Article and Find Full Text PDF

Diabetes is a disease condition characterized by a prolonged, high blood glucose level, which may lead to devastating outcomes unless properly managed. Here, we introduce a simple camera-based optical monitoring system (OMS) utilizing the nanoparticle embedded contact lens that produces color changes matching the tear glucose level without any complicated electronic components. Additionally, we propose an image processing algorithm that automatically optimizes the measurement accuracy even in the presence of image blurring, possibly caused by breathing, subtle movements, and eye blinking.

View Article and Find Full Text PDF

Open-top light-sheet microscopy (OT-LSM) is a specialized microscopic technique for high throughput cellular imaging of large tissue specimens including optically cleared tissues by having the entire optical setup below the sample stage. Current OT-LSM systems had relatively low axial resolutions by using weakly focused light sheets to cover the imaging field of view (FOV). In this report, open-top axially swept LSM (OTAS-LSM) was developed for high-throughput cellular imaging with improved axial resolution.

View Article and Find Full Text PDF

Phototherapy is widely applied to various human diseases. Nanomedicine-based phototherapy can be classified into photodynamic therapy (PDT) and photothermal therapy (PTT). Activated photosensitizer kills the target cells by generating radicals or reactive oxygen species in PDT while generating heat in PTT.

View Article and Find Full Text PDF

Trigeminal ganglion (TG) neurons play an essential role in the sensory nerves of the face. Damaged TG neurons resulting from the accidental and non-intentional nerve lesions, commonly identified as neuropathic pain, which is known to cause intense pain and sensory abnormalities. For the treatment, surgical methods are conducted when the pharmacological treatment fails to provide satisfactory recovery.

View Article and Find Full Text PDF

Glucose level is a primary indicator in the diagnosis and treatment of diabetes mellitus. According to the correlation between glucose concentration in blood and tears, measuring tear glucose can be an alternative to traditional strips test for blood glucose. Thus, measuring tear glucose levels could provide noninvasive monitoring of blood glucose.

View Article and Find Full Text PDF

Platelet aggregation and adhesion are critically involved in both normal hemostasis and thrombosis during vascular injury. Before any surgery, it is important to identify the number of platelets and their functionality to reduce the risk of bleeding; therefore, platelet function testing is a requirement. We introduce a novel evaluation method of assessing platelet function with laser speckle contrast imaging.

View Article and Find Full Text PDF

Red blood cells (RBCs) undergo irreversible biochemical and morphological changes during storage, contributing to the hemorheological changes of stored RBCs, which causes deterioration of microvascular perfusion in vivo. In this study, a home-built optofluidic system for laser speckle imaging of flowing stored RBCs through a transparent microfluidic channel was employed. The speckle decorrelation time (SDT) provides a quantitative measure of RBC changes, including aggregation in the microchannel.

View Article and Find Full Text PDF

Light sheet microscopy (LSM) is an evolving optical imaging technique with a plane illumination for optical sectioning and volumetric imaging spanning cell biology, embryology, and in vivo live imaging. Here, we focus on emerging biomedical applications of LSM for tissue samples. Decoupling of the light sheet illumination from detection enables high-speed and large field-of-view imaging with minimal photobleaching and phototoxicity.

View Article and Find Full Text PDF

Delineation of brain tumor margins during surgery is critical to maximize tumor removal while preserving normal brain tissue to obtain optimal clinical outcomes. Although various imaging methods have been developed, they have limitations to be used in clinical practice. We developed a high-speed cellular imaging method by using clinically compatible moxifloxacin and confocal microscopy for sensitive brain tumor detection and delineation.

View Article and Find Full Text PDF

Cooption of the host vasculature is a strategy that some cancers use to sustain tumor progression without-or before-angiogenesis or in response to antiangiogenic therapy. Facilitated by certain growth factors, cooption can mediate tumor infiltration and confer resistance to antiangiogenic drugs. Unfortunately, this mode of tumor progression is difficult to target because the underlying mechanisms are not fully understood.

View Article and Find Full Text PDF

Background And Study Aim: To develop a molecular imaging endoscopic system that eliminates tissue autofluorescence and distinguishes multiple fluorescent markers specifically on the cancerous lesions.

Methods: Newly developed multi-spectral fluorescence endoscope device has the potential to eliminate signal interference due to autofluorescence and multiplex fluorophores in fluorescent probes. The multiplexing capability of the multi-spectral endoscope device was demonstrated in the phantom studies and multi-spectral imaging with endoscopy and macroscopy was performed to analyze fluorescence signals after administration of fluorescent probe that targets cancer in the colon.

View Article and Find Full Text PDF

Implantable magnetic stimulation is an emerging type of neuromodulation using coils that are small enough to be implanted in the brain. A major advantage of this method is that stimulation performance could be sustained even though the coil is encapsulated by gliosis due to foreign body reactions. Magnetic fields can induce indirect electric fields and currents in neurons.

View Article and Find Full Text PDF

The hippocampus is associated with memory and navigation, and the rodent hippocampus provides a useful model system for studying neurophysiology such as neural plasticity. Vascular changes at this site are closely related to brain diseases, such as Alzheimer's disease, dementia, and epilepsy. Vascular imaging around the hippocampus in mice may help to further elucidate the mechanisms underlying these diseases.

View Article and Find Full Text PDF

Colorectal cancer is one of the leading causes of cancer-related deaths. Although several therapeutic management strategies are available at the early colon cancer stages, such as endoscopic mucosal or submucosal dissection, associated complications often include bleeding or bowel perforations. As an alternative approach, we investigated endoscopic non-ablative fractional laser (eNAFL) irradiation as a minimally invasive therapeutic modality for the treatment of early-stage colorectal cancer.

View Article and Find Full Text PDF