Formulating self-setting calcium phosphate cements (CPCs) with secondary phases particularly in the nanoscale order holds great promise to improve biological properties. Here, we focus on the effect that bioactive glass nanoparticles (BGN) incorporated in CPC compositions can have on the proliferation, odontogenic differentiation, and angiogenic stimulation of stem cells derived from human dental pulp (HDPSCs). These odontogenic and angiogenic events are of special importance in the dentin-pulp regeneration processes.
View Article and Find Full Text PDFMagnetism is an intriguing physical cue that can alter the behaviors of a broad range of cells. Nanocomposite scaffolds that exhibit magnetic properties are thus considered useful 3D matrix for culture of cells and their fate control in repair and regeneration processes. Here we produced magnetic nanocomposite scaffolds made of magnetite nanoparticles (MNPs) and polycaprolactone (PCL), and the effects of the scaffolds on the adhesion, growth, migration and odontogenic differentiation of human dental pulp cells (HDPCs) were investigated.
View Article and Find Full Text PDFUnlabelled: Modified butterfats (MBFs) were produced by lipase-catalyzed interesterification with 2 substrate blends (6:6:8 and 4:6:10, by weight) of anhydrous butterfat (ABF), palm stearin, and flaxseed oil in a stirred-batch type reactor after short path distillation. The 6:6:8 and 4:6:10 MBF contained 21.7% and 26.
View Article and Find Full Text PDFIntroduction: Although bacterial infection and heat stress are common causes of injury in human dental pulp cells (HDPCs), little is known about the potential defense mechanisms mediating their effects. This study examined the role of SIRT1 in mediating heat stress and lipopolysaccharide (LPS)-induced immune and defense gene expression in HDPCs.
Methods: HDPCs were exposed to heat stress (42°C) for 30 minutes after stimulation with LPS (1 μg/mL) for 48 hours.