Efficient photovoltaic devices must be efficient light emitters to reach the thermodynamic efficiency limit. Here, we present a promising prospect of perovskite photovoltaics as bright emitters by harnessing the significant benefits of photon recycling, which can be practically achieved by suppressing interfacial quenching. We have achieved radiative and stable perovskite photovoltaic devices by the design of a multiple quantum well structure with long (∼3 nm) organic spacers with oleylammonium molecules at perovskite top interfaces.
View Article and Find Full Text PDFReliable quality and sustainable processes must be developed for commodities to enter the commercial stage. For next-generation photovoltaic applications such as perovskite solar cells, it is essential to manufacture high-quality photoactive perovskites eco-friendly processes. We demonstrate that ethanol, an ideal green solvent, can be applied to yield efficient alpha-phase FAPbI perovskite microcrystals.
View Article and Find Full Text PDFLight-emitting diodes (LEDs) based on metal halide perovskite quantum dots (QDs) have achieved impressive external quantum efficiencies; however, the lack of surface protection of QDs, combined with efficiency droop, decreases device operating lifetime at brightnesses of interest. The epitaxial incorporation of QDs within a semiconducting shell provides surface passivation and exciton confinement. Achieving this goal in the case of perovskite QDs remains an unsolved challenge in view of the materials' chemical instability.
View Article and Find Full Text PDFThe open-circuit voltage (V ) of perovskite solar cells is limited by non-radiative recombination at perovskite/carrier transport layer (CTL) interfaces. 2D perovskite post-treatments offer a means to passivate the top interface; whereas, accessing and passivating the buried interface underneath the perovskite film requires new material synthesis strategies. It is posited that perovskite ink containing species that bind strongly to substrates can spontaneously form a passivating layer with the bottom CTL.
View Article and Find Full Text PDFMany of the best-performing perovskite photovoltaic devices make use of 2D/3D interfaces, which improve efficiency and stability - but it remains unclear how the conversion of 3D-to-2D perovskite occurs and how these interfaces are assembled. Here, we use in situ Grazing-Incidence Wide-Angle X-Ray Scattering to resolve 2D/3D interface formation during spin-coating. We observe progressive dimensional reduction from 3D to n = 3 → 2 → 1 when we expose (MAPbBr)(FAPbI) perovskites to vinylbenzylammonium ligand cations.
View Article and Find Full Text PDF2D/3D heterojunction perovskite solar cells have demonstrated superior efficiency and stability compared to their fully 3D counterparts. Previous studies have focused on producing 2D layers containing predominantly = 1 perovskite quantum wells. In this report we demonstrate a technique to introduce dimensional mixing into the 2D layer, and we show that this leads to more efficient devices relative to controls.
View Article and Find Full Text PDFTandem solar cells involving metal-halide perovskite subcells offer routes to power conversion efficiencies (PCEs) that exceed the single-junction limit; however, reported PCE values for tandems have so far lain below their potential due to inefficient photon harvesting. Here we increase the optical path length in perovskite films by preserving smooth morphology while increasing thickness using a method we term boosted solvent extraction. Carrier collection in these films - as made - is limited by an insufficient electron diffusion length; however, we further find that adding a Lewis base reduces the trap density and enhances the electron-diffusion length to 2.
View Article and Find Full Text PDFPerovskite solar cells typically comprise electron- and hole-transport materials deposited on each side of a perovskite active layer. So far, only two organic hole-transport materials have led to state-of-the-art performance in these solar cells: poly(triarylamine) (PTAA) and 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD). However, these materials have several drawbacks in terms of commercialization, including high cost, the need for hygroscopic dopants that trigger degradation of the perovskite layer and limitations in their deposition processes.
View Article and Find Full Text PDFThe formation of a dense and uniform thin layer on the substrates is crucial for the fabrication of high-performance perovskite solar cells (PSCs) containing formamidinium with multiple cations and mixed halide anions. The concentration of defect states, which reduce a cell's performance by decreasing the open-circuit voltage and short-circuit current density, needs to be as low as possible. We show that the introduction of additional iodide ions into the organic cation solution, which are used to form the perovskite layers through an intramolecular exchanging process, decreases the concentration of deep-level defects.
View Article and Find Full Text PDFWe have designed and synthesized fluorinated indolo[3,2-]indole (IDID) derivatives as crystalline hole-transporting materials (HTM) for perovskite solar cells. The fluorinated IDID backbone enables a tight molecular arrangement stacked by strong π-π interactions, leading to a higher hole mobility than that of the current HTM standard, ,-spiro-OMeTAD, with a spherical shape and amorphous morphology. Moreover, the photoluminescence quenching in a perovskite/HTM film is more effective at the interface of the perovskite with as compared to that of ,-spiro-OMeTAD.
View Article and Find Full Text PDFCopolymers composed of diketopyrrolopyrrole and phenylene units with different numbers of fluorine subsitution are synthesized. When the effect of the number of fluorine substitution on the n-channel transporting property is investigated, the polymer with four fluorine substitutions exhibits the best n-type charge-transporting behavior with an electron mobility of 2.36 cm(2) V(-1) s(1).
View Article and Find Full Text PDF