Post-acquisition correction of NMR spectra is an important part of NMR spectroscopy that enables refined NMR spectra to be obtained, clean from undesirable out-phasing, broadening and noising. We describe analytical and numerical mathematical methods for post-acquisition correction of NMR spectra distorted by static and dynamic magnetic field inhomogeneity caused by imperfections of main superconducting coils and the cold head operation, typical for cryogen-free magnets. For the dynamic inhomogeneity, we apply a variant of the general reference deconvolution method, complemented with our mathematical analysis of spectral parameters.
View Article and Find Full Text PDFSolid State Nucl Magn Reson
June 2023
We show that the temporal magnetic field distortion generated by the Cold Head operation can be removed and high quality Solid-State Magic Angle Spinning NMR results can be obtained with a cryogen-free magnet. The compact design of the cryogen-free magnets allows for the probe to be inserted either from the bottom (as in most NMR systems) or, more conveniently, from the top. The magnetic field settling time can be made as short as an hour after a field ramp.
View Article and Find Full Text PDFDespite the obvious advantages of cryogen-free magnets for NMR such as independence of liquid helium supply and the possibility to use the same magnet at different fields, the practical application of those magnets remains limited because of temporal magnetic field distortions associated with cryogen-free cold head operation. A new experimental method for the simple and reliable detection of the temporal field distortions is described in this paper. The accuracy of the magnetic field measurements by this method is two orders of magnitude higher than by conventional MetroLab Tesla meter.
View Article and Find Full Text PDFSolid State Nucl Magn Reson
October 2020
We propose a fast algorithm to energise a cryogen free magnet to a highly persistent state. A decay rate as low as 0.021 ppm/h can be achieved in less than an hour after reaching the target field.
View Article and Find Full Text PDFSolid State Nucl Magn Reson
February 2020
The temporal magnetic field variation associated with Cold Head operation in cryogen-free magnets was studied. Three different mechanisms for such variations were tested separately and rated by their importance. It was found that mechanical displacement of the magnet inside the cryostat is the main issue of magnetic field perturbation.
View Article and Find Full Text PDFA Dynamic Nuclear Polarisation (DNP) enhanced solid-state Magic Angle Spinning (MAS) NMR spectrometer operating at 6.7 T is described and demonstrated. The 187 GHz TE(13) fundamental mode of the FU CW VII gyrotron is used as the microwave source for this magnetic field strength and 284 MHz (1)H DNP-NMR.
View Article and Find Full Text PDFIt is shown that the temperature dependence of the DNP enhancement of the NMR signal from water protons at 3.4 T using TEMPOL as a polarising agent can be obtained provided that the nuclear relaxation, T(1I), is sufficiently fast and the resolution sufficient to measure the (1)H NMR shift. For high radical concentrations (∼100 mM) the leakage factor is approximately 1 and, provided sufficient microwave power is available, the saturation factor is also approximately 1.
View Article and Find Full Text PDFDNP enhanced (1)H NMR at 143 MHz in toluene is investigated using an NMR spectrometer coupled with a modified EPR spectrometer operating at 94 GHz and TEMPOL as the polarisation agent. A 100 W microwave amplifier was incorporated into the output stage of the EPR instrument so that high microwave powers could be delivered to the probe in either CW or pulsed mode. The maximum enhancement for the ring protons increases from approximately -16 for a 5 mM TEMPOL solution to approximately -50 for a 20 mM solution at a microwave power of approximately 480 mW.
View Article and Find Full Text PDF