Publications by authors named "Eugenio Onate"

This paper provides experimental data on the temperature rise during granular flows in a small-scale rotating drum due to heat generation. All heat is believed to be generated by conversion of some mechanical energy, through mechanisms such as friction and collisions between particles and between particles and walls. Particles of different material types were used, while multiple rotation speeds were considered, and the drum was filled with different amounts of particles.

View Article and Find Full Text PDF

Due to the fact of activity, environment and work dynamics, the construction industry is characterised by high accident rates. Different initiatives have emerged to reduce these figures, which focus on using new methodologies and technologies for safety management. Therefore, it is essential to know the key factors and their influence on safety in construction projects (fSCPs) to focus efforts on these elements.

View Article and Find Full Text PDF

An overview of high-fidelity modeling of pathogen propagation, transmission and mitigation in the built environment is given. In order to derive the required physical and numerical models, the current understanding of pathogen, and in particular virus transmission and mitigation is summarized. The ordinary and partial differential equations that describe the flow, the particles and possibly the UV radiation loads in rooms or HVAC ducts are presented, as well as proper numerical methods to solve them in an expedient way.

View Article and Find Full Text PDF

A multiscale approach for the detailed simulation of water droplets dispersed in a turbulent airflow is presented. The multiscale procedure combines a novel representative volume element (RVE) with the Pseudo Direct Numerical Simulation (P-DNS) method. The solution at the coarse-scale relies on a synthetic model, constructed using precomputed offline RVE simulations and an alternating digital tree, to characterize the non-linear dynamic response at the fine-scale.

View Article and Find Full Text PDF

A summary is given of the mechanical characteristics of virus contaminants and the transmission via droplets and aerosols. The ordinary and partial differential equations describing the physics of these processes with high fidelity are presented, as well as appropriate numerical schemes to solve them. Several examples taken from recent evaluations of the built environment are shown, as well as the optimal placement of sensors.

View Article and Find Full Text PDF

An aortic dissection (AD) is a serious condition defined by the splitting of the arterial wall, thus generating a secondary lumen [the false lumen (FL)]. Its management, treatment and follow-up are clinical challenges due to the progressive aortic dilatation and potentially severe complications during follow-up. It is well known that the direction and rate of dilatation of the artery wall depend on haemodynamic parameters such as the local velocity profiles, intra-luminal pressures and resultant wall stresses.

View Article and Find Full Text PDF

The management and follow-up of chronic type B aortic dissections continues being a clinical challenge. Patients with chronic type B dissection have high mid/long term mortality mainly due to progressive aortic dilatation and subsequent rupture.

View Article and Find Full Text PDF