Publications by authors named "Eugenio G Minguet"

Under adverse conditions such as shade or elevated temperatures, cotyledon expansion is reduced and hypocotyl growth is promoted to optimize plant architecture. The mechanisms underlying the repression of cotyledon cell expansion remain unknown. Here, we report that the nuclear abundance of the BES1 transcription factor decreased in the cotyledons and increased in the hypocotyl in Arabidopsis thaliana under shade or warmth.

View Article and Find Full Text PDF

Coat protein I (COPI) is necessary for intra-Golgi transport and retrograde transport from the Golgi apparatus back to the endoplasmic reticulum. The key component of the COPI coat is the coatomer complex, which is composed of seven subunits (α/β/β'/γ/δ/ε/ζ) and is recruited from the cytosol onto Golgi membranes. In mammals and yeast, α- and β'-COP WD40 domains mediate cargo-selective interactions with dilysine motifs present in canonical cargoes of COPI vesicles.

View Article and Find Full Text PDF

Legumes have unique features, such as compound inflorescences and a complex floral ontogeny. Thus, the study of regulatory genes in these species during inflorescence and floral development is essential to understand their role in the evolutionary origin of developmental novelties. The SUPERMAN (SUP) gene encodes a C2H2 zinc-finger transcriptional repressor that regulates the floral organ number in the third and fourth floral whorls of Arabidopsis thaliana.

View Article and Find Full Text PDF

Guide RNA design for CRISPR genome editing of gene families is a challenging task as usually good candidate sgRNAs are tagged with low scores precisely because they match several locations in the genome, thus time-consuming manual evaluation of targets is required. To address this issues, I have developed ARES-GT, a Python local command line tool compatible with any operative system. ARES-GT allows the selection of candidate sgRNAs that match multiple input query sequences, in addition of candidate sgRNAs that specifically match each query sequence.

View Article and Find Full Text PDF
Article Synopsis
  • DELLAs play a crucial role in regulating plant growth by responding to environmental factors like temperature and light through their interaction with hormone levels, specifically gibberellins (GAs).
  • Warm temperatures or shade can reduce the stability of certain GA-insensitive DELLA proteins, indicating that these conditions impact plant growth independently of GA levels.
  • The E3 ubiquitin ligase COP1 is essential for promoting DEllA degradation, working alongside COP1's partner SPA1, and this interaction suggests an additional pathway for DELLAs’ destabilization beyond what was previously understood.
View Article and Find Full Text PDF

Efficient elimination of the editing machinery remains a challenge in plant biotechnology after genome editing to minimize the probability of off-target mutations, but it is also important to deliver end users with edited plants free of foreign DNA. Using the modular cloning system Golden Braid, we have included a fluorescence-dependent transgene monitoring module to the genome-editing tool box. We have tested this approach in , , and .

View Article and Find Full Text PDF

The CRISPR/Cas12a editing system opens new possibilities for plant genome engineering. To obtain a comparative assessment of RNA-guided endonuclease (RGEN) types in plants, we adapted the CRISPR/Cas12a system to the GoldenBraid (GB) modular cloning platform and compared the efficiency of Acidaminococcus (As) and Lachnospiraceae (Lb) Cas12a variants with the previously described GB-assembled Streptococcus pyogenes Cas9 (SpCas9) constructs in eight Nicotiana benthamiana loci using transient expression. All three nucleases showed drastic target-dependent differences in efficiency, with LbCas12 producing higher mutagenesis rates in five of the eight loci assayed, as estimated with the T7E1 endonuclease assay.

View Article and Find Full Text PDF

De-etiolation is the first developmental process under light control allowing the heterotrophic seedling to become autotrophic. The phytohormones cytokinins (CKs) largely contribute to this process. Reversible phosphorylation is a key event of cell signaling, allowing proteins to become active or generating a binding site for specific protein interaction.

View Article and Find Full Text PDF

Plants coordinate their growth and development with the environment through integration of circadian clock and photosensory pathways. In Arabidopsis thaliana, rhythmic hypocotyl elongation in short days (SD) is enhanced at dawn by the basic-helix-loop-helix (bHLH) transcription factors PHYTOCHROME-INTERACTING FACTORS (PIFs) directly inducing expression of growth-related genes [1-6]. PIFs accumulate progressively during the night and are targeted for degradation by active phytochromes in the light, when growth is reduced.

View Article and Find Full Text PDF

High temperature is a general stress factor that causes a decrease in crop yield. It has been shown that auxin application reduces the male sterility caused by exposure to higher temperatures. However, widespread application of a hormone with vast effects on plant physiology may be discouraged in many cases.

View Article and Find Full Text PDF

Control of tissue dimensions in multicellular organisms requires the precise quantitative regulation of mitotic activity. In plants, where cells are immobile, tissue size is achieved through control of both cell division orientation and mitotic rate. The bHLH transcription factor heterodimer formed by target of monopteros5 (TMO5) and lonesome highway (LHW) is a central regulator of vascular width-increasing divisions.

View Article and Find Full Text PDF

Transcriptional networks are central to any biological process and changes affecting transcription factors or their binding sites in the genome are a key factor driving evolution. As more organisms are being sequenced, tools are needed to easily predict transcription factor binding sites (TFBS) presence and affinity from mere inspection of genomic sequences. Although many TFBS discovery algorithms exist, tools for using the DNA binding models they generate are relatively scarce and their use is limited among the biologist community by the lack of flexible and user-friendly tools.

View Article and Find Full Text PDF

Plant development is modulated by the convergence of multiple environmental and endogenous signals, and the mechanisms that allow the integration of different signaling pathways is currently being unveiled. A paradigmatic case is the concurrence of brassinosteroid (BR) and gibberellin (GA) signaling in the control of cell expansion during photomorphogenesis, which is supported by physiological observations in several plants but for which no molecular mechanism has been proposed. In this work, we show that the integration of these two signaling pathways occurs through the physical interaction between the DELLA protein GAI, which is a major negative regulator of the GA pathway, and BRASSINAZOLE RESISTANT1 (BZR1), a transcription factor that broadly regulates gene expression in response to BRs.

View Article and Find Full Text PDF

The role of the tetraamine spermine in plant defense against pathogens was investigated by using the Arabidopsis (Arabidopsis thaliana)-Pseudomonas viridiflava pathosystem. The effects of perturbations of plant spermine levels on susceptibility to bacterial infection were evaluated in transgenic plants (35S::spermine synthase [SPMS]) that overexpressed the SPMS gene and accumulated spermine, as well as in spms mutants with low spermine levels. The former exhibited higher resistance to P.

View Article and Find Full Text PDF

The apical hook develops in the upper part of the hypocotyl when seeds buried in the soil germinate, and serves to protect cotyledons and the shoot apical meristem from possible damage caused by pushing through the soil. The curvature is formed through differential cell growth that occurs at the two opposite sides of the hypocotyl, and it is established by a gradient of auxin activity and refined by the coordinated action of auxin and ethylene. Here we show that gibberellins (GAs) promote hook development through the transcriptional regulation of several genes of the ethylene and auxin pathways in Arabidopsis.

View Article and Find Full Text PDF

Despite great advances in sequencing technologies, generating functional information for nonmodel organisms remains a challenge. One solution lies in an improved ability to predict genetic circuits based on primary DNA sequence in combination with detailed knowledge of regulatory proteins that have been characterized in model species. Here, we focus on the LEAFY (LFY) transcription factor, a conserved master regulator of floral development.

View Article and Find Full Text PDF

Several pieces of evidence suggest a role for polyamines in the regulation of plant vascular development. For instance, polyamine oxidase gene expression has been shown to be associated with lignification, and downregulation of S-adenosylmethionine decarboxylase causes dwarfism and enlargement of the vasculature. Recent evidence from Arabidopsis thaliana also suggests that the active polyamine in the regulation of vascular development is the tetraamine thermospermine.

View Article and Find Full Text PDF

Plasticity and robustness of signaling pathways partly rely on genetic redundancy, although the precise mechanism that provides functional specificity to the different redundant elements in a given process is often unknown. In Arabidopsis, functional redundancy in gibberellin signaling has been largely attributed to the presence of five members of the DELLA family of transcriptional regulators. Here, we demonstrate that two evolutionarily and functionally divergent DELLA proteins, RGL2 and RGA, can perform exchangeable functions when they are expressed under control of the reciprocal promoter.

View Article and Find Full Text PDF

Polyamine biosynthesis is an ancient metabolic pathway present in all organisms. Aminopropyltransferases are key enzymes that mediate the synthesis of spermidine, spermine, and thermospermine. The relatively high sequence similarity between aminopropyltransferases and their similarity with putrescine N-methyltransferases (PMT) raises the question of whether they share a common ancestor or have evolved by convergence.

View Article and Find Full Text PDF

Cell size and secondary cell wall patterning are crucial for the proper functioning of xylem vessel elements in the vascular tissues of plants. Through detailed anatomical characterization of Arabidopsis thaliana hypocotyls, we observed that mutations in the putative spermine biosynthetic gene ACL5 severely affected xylem specification: the xylem vessel elements of the acl5 mutant were small and mainly of the spiral type, and the normally predominant pitted vessels as well as the xylem fibers were completely missing. The cell-specific expression of ACL5 in the early developing vessel elements, as detected by in situ hybridization and reporter gene analyses, suggested that the observed xylem vessel defects were caused directly by the acl5 mutation.

View Article and Find Full Text PDF

The conversion of putrescine to spermidine in the biosynthetic pathway of plant polyamines is catalyzed by two closely related spermidine synthases, SPDS1 and SPDS2, in Arabidopsis. In the yeast two-hybrid system, SPDS2 was found to interact with SPDS1 and a novel protein, SPMS (spermine synthase), which is homologous with SPDS2 and SPDS1. SPMS interacts with both SPDS1 and SPDS2 in yeast and in vitro.

View Article and Find Full Text PDF