We report on W-band EPR and quantum chemical investigation of novel organic tetraradicals with negative axial zero-field splitting (ZFS) parameter These belong to the class of quintet 1,3,5-tribromophenylene-2,4-dinitrenes bearing different substituents in position 6 of the benzene ring (, N; , F; , CN; ; Cl; , Br). Analysis of the W-band EPR spectrum of dinitrene reveals its large negative ZFS parameter = -0.27 cm.
View Article and Find Full Text PDFTriplet phosphinidenes, which have been postulated as important intermediates in numerous organophosphorus reactions, have been previously directly observed only in isolated cases. Recently we have published the first recorded EPR spectrum of triplet phosphinidene-mesitylphosphinidene (A. V.
View Article and Find Full Text PDFAccurate determination of the spin Hamiltonian parameters in transition-metal complexes with large zero-field splitting (ZFS) is an actual challenge in studying magnetic and spectroscopic properties of high-spin transition metal complexes. Recent critical papers have convincingly shown that previous determinations of these parameters, based only on the magnetic data, have low accuracy and reliability. A combination of X-band electron paramagnetic resonance (EPR) spectroscopy and SQUID magnetometry seems to be a more convincing and accurate approach.
View Article and Find Full Text PDFPreviously unknown the steric heavy atom effect on magnetic anisotropy parameters of triplet phenyl nitrenes is reported. The heavy bromine atom effect is revealed by W-band EPR and theoretical investigations of triplet 2,4,6-tribromophenyl nitrenes bearing different substituents in positions 3 and 5 of the phenyl ring (1a, H/H; 1b, CN/CN; 1c, N/F; 1d, N/N; 1e, Cl/Cl; 1f, Br/Br). The zero-field splitting parameters of nitrenes 1a ( D = 0.
View Article and Find Full Text PDFWe report a combined experimental characterization and theoretical modeling of the hexa-coordinated high-spin Co(ii) complex cis-[Co(hfac)(HO)] (I). The magnetic static field (DC) data and EPR spectra (measurements were carried out on the powder samples of diluted samples cis-[CoZn (hfac)(HO)]) were analyzed with the aid of the parametric Griffith Hamiltonian for the high-spin Co(ii) supported by the ab initio calculations of the crystal field (CF) parameters, g-factors and superexchange parameters between H-bonded Co(ii) ions in the neighboring molecules in a 1D network. This analysis suggests the presence of the easy axis of magnetic anisotropy and also shows the existence of a significant rhombic component.
View Article and Find Full Text PDFIn this article we report the synthesis and structure of the new Co(II) complex EtN[Co(hfac)] (I) (hfac = hexafluoroacetylacetonate) exhibiting single-ion magnet (SIM) behavior. The performed analysis of the magnetic characteristics based on the complementary experimental techniques such as static and dynamic magnetic measurements, electron paramagnetic resonance spectroscopy in conjunction with the theoretical modeling (parametric Hamiltonian and ab initio calculations) demonstrates that the SIM properties of I arise from the nonuniaxial magnetic anisotropy with strong positive axial and significant rhombic contributions.
View Article and Find Full Text PDFThe heavy atom effect on the magnetic anisotropy of septet trinitrenes is reported. Septet 1-bromo-3,5-dichloro-2,4,6-trinitrenobenzene (S-1) was generated in a solid argon matrix by ultraviolet irradiation of 1,3,5-triazido-2-bromo-4,6-dichlorobenzene. This trinitrene displays an electron spin resonance (ESR) spectrum that drastically differs from ESR spectra of all previously studied septet trinitrenes.
View Article and Find Full Text PDFThe ESR spectrum of compact nitroxide (NO)-substituted nitronyl nitroxide (NN) triplet diradical N-tert-butyl-N-oxidanyl-2-amino-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl (1) was recorded in solid argon matrix at 15 K. The zero-field splitting (ZFS) parameters of 1 were derived from the recorded ESR spectrum: |D| = 0.0248 cm(-1) and E = 0.
View Article and Find Full Text PDFThe fine-structure (FS) parameters D of a series of D3h symmetric septet trinitrenes were analyzed theoretically using density functional theory (DFT) calculations and compared with the experimental D values derived from ESR spectra. ESR studies show that D3h symmetric septet 1,3,5-trichloro-2,4,6-trinitrenobenzene with D = -0.0957 cm(-1) and E = 0 cm(-1) is the major paramagnetic product of the photolysis of 1,3,5-triazido-2,4,6-trichlorobenzene in solid argon matrices at 15 K.
View Article and Find Full Text PDFHigh-spin organic molecules with dominant spin-orbit contribution to magnetic anisotropy are reported. Quintet 4-azido-3,5-dibromopyridyl-2,6-dinitrene (Q-1), quintet 2-azido-3,5-dibromopyridyl-4,6-dinitrene (Q-2), and septet 3,5-dibromopyridyl-2,4,6-trinitrene (S-1) were generated in solid argon matrices by ultraviolet irradiation of 2,4,6-triazido-3,5-dibromopyridine. The zero-field splitting (ZFS) parameters, derived from electron spin resonance spectra, show unprecedentedly large magnitudes of the parameters D: ∣D(Q1)∣ = 0.
View Article and Find Full Text PDFThe ESR spectrum of 5-methylhexa-1,2,4-triene-1,3-diyl (1) was recorded in an argon matrix at 15 K. The derived zero-field splitting (ZFS) parameters (D = 0.5054 ± 0.
View Article and Find Full Text PDFThis work presents a detailed evaluation of the performance of density functional theory (DFT) for the prediction of zero-field splittings (ZFSs) in high-spin nitrenes. A number of well experimentally characterized triplet mononitrenes, quartet nitrenoradicals, quintet dinitrenes, and septet trinitrenes have been considered. Several DFT-based approaches for the prediction of ZFSs have been compared.
View Article and Find Full Text PDFThe EPR spectrum of the Y@C(82) molecules isolated in solid argon matrix was recorded for the first time at a temperature of 5 K. The isotropic hyperfine coupling constant (hfcc) A(iso) = 0.12 +/- 0.
View Article and Find Full Text PDFSeptet 2,4,6-trinitrenotoluene is the major paramagnetic product formed during the photolysis of 2,4,6-triazidotoluene in cryogenic matrices. This trinitrene displays different electron paramagnetic resonance (EPR) spectra in solid argon and in 2-methyltetrahydrofuran (2MTHF) glass, corresponding to septet spin states with the zero-field splitting (ZFS) parameters D(S) = -0.0938 cm(-1), E(S) = -0.
View Article and Find Full Text PDFXenon trifluoride radicals were generated by the solid-state chemical reaction of mobile fluorine atoms with XeF(2) molecules isolated in a solid argon matrix. On the basis of spectroscopic and kinetic FTIR measurements and performed quantum chemical calculations, two infrared absorption bands at 568 (strong) and 523 (very weak) cm(-1) have been assigned to asymmetric and symmetric Xe-F stretching vibrational modes of radical (*)XeF(3), respectively. Chemical reaction of fluorine atom with XeF(2) in a solid argon cage obeys specific kinetic behavior indicating the formation of a long-lived intermediate complex under the condition that the diffusing fluorine atom is attached to isolated XeF(2) at temperatures 20 K < T < 27 K.
View Article and Find Full Text PDFXenon fluoride radicals were generated by solid-state chemical reactions of mobile fluorine atoms with xenon atoms trapped in Ar matrix. Highly resolved electron spin resonance spectra of XeF* were obtained in the temperature range of 5-25 K and the anisotropic hyperfine parameters were determined for magnetic nuclei 19F, 129Xe, and 131Xe using naturally occurring and isotopically enriched xenon. Signs of parallel and perpendicular hyperfine components were established from analysis of temperature changes in the spectra and from numerical solutions of the spin Hamiltonian for two nonequivalent magnetic nuclei.
View Article and Find Full Text PDF