Although several primers targeted to the internal transcribed-spacer 1 (ITS1) of the ribosomal DNA (rDNA) have been designed to improve the detection of African trypanosomes, no study tried to compare their agreement level and ability to amplify different trypanosome species in tsetse flies and mammals in various epidemiological settings. This study was designed to fill this gap, by targeting tsetse-infested areas of Cameroon. For this, archived DNA samples reporting at-least one trypanosome species with species-specific PCR primers were reviewed.
View Article and Find Full Text PDFVet Parasitol Reg Stud Reports
June 2023
Monitoring and assessment of control strategies for African trypanosomoses' elimination require not only updating data on trypanosome infections, but also to have an overview on the molecular profiles of trypanocides resistance in different epidemiological settings. This study was designed to determine, in animals from six tsetse-infested areas of Cameroon, the prevalence of trypanosome infections as well as the diminazene aceturate (DA) and isometamidium chloride (ISM) sensitivity/resistance molecular profiles of these trypanosomes. From 2016 to 2019, blood was collected in pigs, dogs, sheep, goats and cattle from six tsetse infested areas of Cameroon.
View Article and Find Full Text PDFParasite Epidemiol Control
May 2020
African animal trypanosomiases are caused by trypanosomes cyclically or mechanically transmitted by tsetse and other biting flies. Although molecular tools have been developed to identify drug-resistant trypanosomes in mammals, little or no investigation on drug-resistance has been undertaken on trypanosomes harbored by tsetse flies. Moreover, no data on mechanical vectors of African trypanosomes is available in most endemic areas of Cameroon.
View Article and Find Full Text PDF