Rationale And Objectives: The potential of contrast-enhanced MRI for diagnosing endolymphatic hydrops is limited by long wait times following intravenous (IV) or intratympanic (IT) delivery, high contrast dosages, and inconsistent signal intensity enhancements. This study investigates microneedle-mediated intracochlear (IC) gadodiamide injection for consistent and efficient contrast delivery with minimal contrast dosage.
Materials And Methods: A 100 µm diameter microneedle with 35 µm lumen was used to inject 1 µL of diluted gadodiamide (17.
Hypothesis: Microneedle-mediated intracochlear injection of siRNA-Lipofectamine through the round window membrane (RWM) can be used to transfect cells within the cochlea.
Background: Our laboratory has developed 100-μm diameter hollow microneedles for intracochlear injection through the guinea pig RWM. In this study, we test the feasibility of microneedle-mediated injection of siRNA and Lipofectamine, a commonly used reagent with known cellular toxicity, through the RWM for cochlear transfection.
The scalar position of the electrode array is assumed to be associated with auditory performance after cochlear implantation. We propose a new method that can be routinely applied in clinical practice to assess the position of an electrode array. Ten basilar membrane templates were generated using micro-computed tomography (micro-CT), based on the dimensions of 100 cochleae.
View Article and Find Full Text PDF