Abnormal dopamine neurotransmission is a common trait of some psychiatric diseases, like schizophrenia or bipolar disorder. Excessive dopaminergic tone in subcortical brain regions is associated with psychotic episodes, while reduced prefrontal dopaminergic activity is associated with impaired cognitive performance and reduced motivation, among other symptoms. Inhibitory interneurons expressing the calcium binding protein parvalbumin are particularly affected in both schizophrenia and bipolar disorder, as they set a fine-tuned physiological inhibitory/excitatory balance.
View Article and Find Full Text PDFBackground: Schizophrenia is a disease diagnosed by visible signs and symptoms from late adolescence to early adulthood. The etiology of this disease remains unknown. An objective diagnostic approach is required.
View Article and Find Full Text PDFThe process of locomotion is controlled by fine-tuned dopaminergic neurons in the Substantia Nigra pars-compacta (SNpc) that projects their axons to the dorsal striatum regulating cortical innervations of medium spiny neurons. Dysfunction in dopaminergic neurotransmission within the striatum leads to movement impairments, gaiting defects, and hypo-locomotion. Due to their high polarity and extreme axonal arborization, neurons depend on molecular motor proteins and microtubule-based transport for their normal function.
View Article and Find Full Text PDFExcessive dopamine neurotransmission underlies psychotic episodes as observed in patients with some types of bipolar disorder and schizophrenia. The dopaminergic hypothesis was postulated after the finding that antipsychotics were effective to halt increased dopamine tone. However, there is little evidence for dysfunction within the dopaminergic system itself.
View Article and Find Full Text PDFUsing immunohistochemical techniques, we characterized changes in the expression of several neurochemical markers in lumbar 4-sacral 2 (L4-S2) dorsal root ganglion (DRG) neuron profiles (NPs) and the spinal cord of BALB/c mice after axotomy of the L6 and S1 spinal nerves, major tributaries of the pelvic (targeting pelvic visceral organs) and pudendal (targeting perineum and genitalia) nerves. Sham animals were included. Expression of cyclic AMP-dependent transcription factor 3 (ATF3), calcitonin gene-related peptide (CGRP), transient receptor potential cation channel subfamily V, member 1 (TRPV1), tyrosine hydroxylase (TH) and vesicular glutamate transporters (VGLUT) types 1 and -2 was analysed seven days after injury.
View Article and Find Full Text PDF