SARS-CoV-2 started spreading toward the end of 2019 causing COVID-19, a disease that reached pandemic proportions among the human population within months. The reasons for the spectrum of differences in the severity of the disease across the population, and in particular why the disease affects more severely the aging population and those with specific preconditions are unclear. We developed machine learning models to mine 240,000 scientific articles openly accessible in the CORD-19 database, and constructed knowledge graphs to synthesize the extracted information and navigate the collective knowledge in an attempt to search for a potential common underlying reason for disease severity.
View Article and Find Full Text PDFThe fast accumulation of biological data calls for their integration, analysis and exploitation through more systematic approaches. The generation of novel, relevant hypotheses from this enormous quantity of data remains challenging. Logical models have long been used to answer a variety of questions regarding the dynamical behaviours of regulatory networks.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
March 2020
The general question of what constitutes bio-curation for rule-based modelling of cellular signalling is posed. A general approach to the problem is presented, based on rewriting in hierarchies of graphs, together with a specific instantiation of the methodology that addresses our particular bio-curation problem. The current state of the ongoing development of the KAMI bio-curation tool, based on this approach, is outlined along with our plans for future development.
View Article and Find Full Text PDF