Publications by authors named "Eugenia Nicolov"

Transplantation of pancreatic islets or stem cell derived insulin secreting cells is an attractive treatment strategy for diabetes. However, islet transplantation is associated with several challenges including function-loss associated with dispersion and limited vascularization as well as the need for continuous immunosuppression. To overcome these limitations, here we present a novel 3D printed and functionalized encapsulation system for subcutaneous engraftment of islets or islet like cells.

View Article and Find Full Text PDF

This study demonstrated a nanochannel membrane device (NMD) for controlled and sustained release of GC-1 in rats, in the context of the treatment of metabolic syndrome. Release profiles were established in vitro both with and without 5% labrasol for over 2 months. In vivo pharmacokinetic evaluation showed effective GC-1 plasma concentrations, which resulted in significant reductions in body weight after just one week of treatment when compared to the NMD releasing vehicle only (PBS).

View Article and Find Full Text PDF

Implantable devices may provide a superior means for hormone delivery through maintaining serum levels within target therapeutic windows. Zero-order administration has been shown to reach an equilibrium with metabolic clearance, resulting in a constant serum concentration and bioavailability of released hormones. By exploiting surface-to-molecule interaction within nanochannel membranes, it is possible to achieve a long-term, constant diffusive release of agents from implantable reservoirs.

View Article and Find Full Text PDF

Introduction: The goal of testosterone replacement is to provide long-term physiological supplementation at sufficient levels to mitigate the symptoms of hypogonadism.

Aim: The objective of this work is to determine if the implantable nanochannel delivery system (nDS) can present an alternative delivery strategy for the long-term sustained and constant release of testosterone.

Methods: A formulation of common testosterone esters (F1) was developed to enable nanochannel delivery of the low water soluble hormone.

View Article and Find Full Text PDF

Breast cancer remains the second leading cause of cancer deaths for women in the U.S. The need for new and alternative strategies to treat this cancer is imperative.

View Article and Find Full Text PDF

Primary or secondary hypogonadism results in a range of signs and symptoms that compromise quality of life and requires life-long testosterone replacement therapy. In this study, an implantable nanochannel system is investigated as an alternative delivery strategy for the long-term sustained and constant release of testosterone. In vitro release tests are performed using a dissolution set up, with testosterone and testosterone:2-hydroxypropyl-β-cyclodextrin (TES:HPCD) 1:1 and 1:2 molar ratio complexes release from the implantable nanochannel system and quantify by HPLC.

View Article and Find Full Text PDF

The cells present in amniotic fluid (AF) are currently used for prenatal diagnosis of fetal anomalies but are also a potential source of cells for cell therapy. To better characterize putative progenitor cell populations present in AF, we used culture conditions that support self-renewal to determine if these promoted the generation of stable cell lines from AF-derived cells (AFC). Cells isolated from E11.

View Article and Find Full Text PDF

Novel drug delivery systems capable of continuous sustained release of therapeutics have been studied extensively for use in the prevention and management of chronic diseases. The use of these systems holds promise as a means to achieve higher patient compliance while improving therapeutic index and reducing systemic toxicity. In this work, an implantable nanochannel drug delivery system (nDS) is characterized and evaluated for the long-term sustained release of atorvastatin (ATS) and trans-resveratrol (t-RES), compounds with a proven role in managing atherogenic dyslipidemia and promoting cardioprotection.

View Article and Find Full Text PDF